1,761 research outputs found
Use of marginal organs in kidney transplantation for marginal recipients: too close to the margins of safety?
<p>Abstract</p> <p>Objective</p> <p>Due to organ shortage, average waiting time for a kidney in Germany is about 4 years after start of dialysis. Number of kidney grafts recovered can only be maintained by accepting older and expanded criteria donors. The aim of this study was to analyse the impact of donor and recipient risk on kidney long-term function.</p> <p>Methods</p> <p>All deceased kidney transplantations were considered. We retrospectively studied 332 patients between 2002 and 2006; divided in 4 groups reflecting donor and recipient risk.</p> <p>Results</p> <p>Non-marginal recipients were less likely to receive a marginal organ (69 of 207, 33%) as compared to marginal recipients, of whom two-thirds received a marginal organ (p < 0.0001). Graft function significantly differed between the groups, but detrimental effect of marginal recipient status on eGFR after 12 months (-6 ml/min/1.73 qm, 95% CI -2 to -9) was clearly smaller than the effect of marginal donor status (-10 ml/min/1.73 qm, 95% CI -7 to -14).</p> <p>Conclusions</p> <p>As we were able to show expanded criteria donor has a far bigger effect on long-term graft function than the "extra risk" recipient. Although there have been attempts to define groups of recipients who should be offered ECD kidneys primarily the discussion is still ongoing.</p
Validation of the Thai version of the family reported outcome measure (FROM-16)© to assess the impact of disease on the partner or family members of patients with cancer
© The Author(s). 2019Background: Cancer not only impairs a patient's physical and psychosocial functional behaviour, but also contributes to negative impact on family members' health related quality of life. Currently, there is an absence of a relevant tool in Thai with which to measure such impact. The aim of this study was to translate and validate the Family Reported Outcome Measure (FROM-16) in Thai cancer patients' family members. Methods: Thai version of FROM-16 was generated by interactive forward-backward translation process following standard guidelines. This was tested for psychometric properties including reliability and validity, namely content validity, concurrent validity, known group validity, internal consistency, exploratory and confirmatory factor analysis. Construct validity was examined by comparing the Thai FROM-16 version with the WHOQOL-BREF-THAI. Results: The internal consistency reliability was strong (Cronbach's alpha = 0.86). A Negative moderate correlation between the Thai FROM-16 and WHOQOL-BREF-THAI was observed (r = - 0.4545, p < 0.00), and known group validity was proved by a statistically significant higher score in family members with high burden of care and insufficient income. The factor analysis supported both 3-factor and 2-factor loading model with slight difference when compared with the original version. Conclusions: The Thai FROM-16 showed good reliability and validity in Thai family members of patients with cancer. A slight difference in factor analysis results compared to the original version could be due to cross-culture application.Peer reviewedFinal Published versio
Automatic Network Fingerprinting through Single-Node Motifs
Complex networks have been characterised by their specific connectivity
patterns (network motifs), but their building blocks can also be identified and
described by node-motifs---a combination of local network features. One
technique to identify single node-motifs has been presented by Costa et al. (L.
D. F. Costa, F. A. Rodrigues, C. C. Hilgetag, and M. Kaiser, Europhys. Lett.,
87, 1, 2009). Here, we first suggest improvements to the method including how
its parameters can be determined automatically. Such automatic routines make
high-throughput studies of many networks feasible. Second, the new routines are
validated in different network-series. Third, we provide an example of how the
method can be used to analyse network time-series. In conclusion, we provide a
robust method for systematically discovering and classifying characteristic
nodes of a network. In contrast to classical motif analysis, our approach can
identify individual components (here: nodes) that are specific to a network.
Such special nodes, as hubs before, might be found to play critical roles in
real-world networks.Comment: 16 pages (4 figures) plus supporting information 8 pages (5 figures
Block of death-receptor apoptosis protects mouse cytomegalovirus from macrophages and is a determinant of virulence in immunodeficient hosts.
The inhibition of death-receptor apoptosis is a conserved viral function. The murine cytomegalovirus (MCMV) gene M36 is a sequence and functional homologue of the human cytomegalovirus gene UL36, and it encodes an inhibitor of apoptosis that binds to caspase-8, blocks downstream signaling and thus contributes to viral fitness in macrophages and in vivo. Here we show a direct link between the inability of mutants lacking the M36 gene (ΔM36) to inhibit apoptosis, poor viral growth in macrophage cell cultures and viral in vivo fitness and virulence. ΔM36 grew poorly in RAG1 knockout mice and in RAG/IL-2-receptor common gamma chain double knockout mice (RAGγC(-/-)), but the depletion of macrophages in either mouse strain rescued the growth of ΔM36 to almost wild-type levels. This was consistent with the observation that activated macrophages were sufficient to impair ΔM36 growth in vitro. Namely, spiking fibroblast cell cultures with activated macrophages had a suppressive effect on ΔM36 growth, which could be reverted by z-VAD-fmk, a chemical apoptosis inhibitor. TNFα from activated macrophages synergized with IFNγ in target cells to inhibit ΔM36 growth. Hence, our data show that poor ΔM36 growth in macrophages does not reflect a defect in tropism, but rather a defect in the suppression of antiviral mediators secreted by macrophages. To the best of our knowledge, this shows for the first time an immune evasion mechanism that protects MCMV selectively from the antiviral activity of macrophages, and thus critically contributes to viral pathogenicity in the immunocompromised host devoid of the adaptive immune system
Eft for DFT
These lectures give an overview of the ongoing application of effective field
theory (EFT) and renormalization group (RG) concepts and methods to density
functional theory (DFT), with special emphasis on the nuclear many-body
problem.Comment: 57 pages, to appear in the proceedings of the ECT* school on
"Renormalization Group and Effective Field Theory Approaches to Many-Body
Systems", Springer Lecture Notes in Physics; acknowledgment adde
A Minimal Threshold of c-di-GMP Is Essential for Fruiting Body Formation and Sporulation in Myxococcus xanthus
Generally, the second messenger bis-(3’-5’)-cyclic dimeric GMP (c-di-GMP) regulates the switch between motile and sessile lifestyles in bacteria. Here, we show that c-di-GMP is an essential regulator of multicellular development in the social bacterium Myxococcus xanthus. In response to starvation, M. xanthus initiates a developmental program that culminates in formation of spore-filled fruiting bodies. We show that c-di-GMP accumulates at elevated levels during development and that this increase is essential for completion of development whereas excess c-di-GMP does not interfere with development. MXAN3735 (renamed DmxB) is identified as a diguanylate cyclase that only functions during development and is responsible for this increased c-di-GMP accumulation. DmxB synthesis is induced in response to starvation, thereby restricting DmxB activity to development. DmxB is essential for development and functions downstream of the Dif chemosensory system to stimulate exopolysaccharide accumulation by inducing transcription of a subset of the genes encoding proteins involved in exopolysaccharide synthesis. The developmental defects in the dmxB mutant are non-cell autonomous and rescued by co-development with a strain proficient in exopolysaccharide synthesis, suggesting reduced exopolysaccharide accumulation as the causative defect in this mutant. The NtrC-like transcriptional regulator EpsI/Nla24, which is required for exopolysaccharide accumulation, is identified as a c-diGMP receptor, and thus a putative target for DmxB generated c-di-GMP. Because DmxB can be—at least partially—functionally replaced by a heterologous diguanylate cyclase, these results altogether suggest a model in which a minimum threshold level of c-di-GMP is essential for the successful completion of multicellular development in M. xanthus
Gene Expression in the Rodent Brain is Associated with Its Regional Connectivity
The putative link between gene expression of brain regions and their neural connectivity patterns is a fundamental question in neuroscience. Here this question is addressed in the first large scale study of a prototypical mammalian rodent brain, using a combination of rat brain regional connectivity data with gene expression of the mouse brain. Remarkably, even though this study uses data from two different rodent species (due to the data limitations), we still find that the connectivity of the majority of brain regions is highly predictable from their gene expression levels–the outgoing (incoming) connectivity is successfully predicted for 73% (56%) of brain regions, with an overall fairly marked accuracy level of 0.79 (0.83). Many genes are found to play a part in predicting both the incoming and outgoing connectivity (241 out of the 500 top selected genes, p-value<1e-5). Reassuringly, the genes previously known from the literature to be involved in axon guidance do carry significant information about regional brain connectivity. Surveying the genes known to be associated with the pathogenesis of several brain disorders, we find that those associated with schizophrenia, autism and attention deficit disorder are the most highly enriched in the connectivity-related genes identified here. Finally, we find that the profile of functional annotation groups that are associated with regional connectivity in the rodent is significantly correlated with the annotation profile of genes previously found to determine neural connectivity in C. elegans (Pearson correlation of 0.24, p<1e-6 for the outgoing connections and 0.27, p<1e-5 for the incoming). Overall, the association between connectivity and gene expression in a specific extant rodent species' brain is likely to be even stronger than found here, given the limitations of current data
Triad3a induces the degradation of early necrosome to limit RipK1-dependent cytokine production and necroptosis.
Understanding the molecular signaling in programmed cell death is vital to a practical understanding of inflammation and immune cell function. Here we identify a previously unrecognized mechanism that functions to downregulate the necrosome, a central signaling complex involved in inflammation and necroptosis. We show that RipK1 associates with RipK3 in an early necrosome, independent of RipK3 phosphorylation and MLKL-induced necroptotic death. We find that formation of the early necrosome activates K48-ubiquitin-dependent proteasomal degradation of RipK1, Caspase-8, and other necrosomal proteins. Our results reveal that the E3-ubiquitin ligase Triad3a promotes this negative feedback loop independently of typical RipK1 ubiquitin editing enzymes, cIAPs, A20, or CYLD. Finally, we show that Triad3a-dependent necrosomal degradation limits necroptosis and production of inflammatory cytokines. These results reveal a new mechanism of shutting off necrosome signaling and may pave the way to new strategies for therapeutic manipulation of inflammatory responses
Investigating human audio-visual object perception with a combination of hypothesis-generating and hypothesis-testing fMRI analysis tools
Primate multisensory object perception involves distributed brain regions. To investigate the network character of these regions of the human brain, we applied data-driven group spatial independent component analysis (ICA) to a functional magnetic resonance imaging (fMRI) data set acquired during a passive audio-visual (AV) experiment with common object stimuli. We labeled three group-level independent component (IC) maps as auditory (A), visual (V), and AV, based on their spatial layouts and activation time courses. The overlap between these IC maps served as definition of a distributed network of multisensory candidate regions including superior temporal, ventral occipito-temporal, posterior parietal and prefrontal regions. During an independent second fMRI experiment, we explicitly tested their involvement in AV integration. Activations in nine out of these twelve regions met the max-criterion (A < AV > V) for multisensory integration. Comparison of this approach with a general linear model-based region-of-interest definition revealed its complementary value for multisensory neuroimaging. In conclusion, we estimated functional networks of uni- and multisensory functional connectivity from one dataset and validated their functional roles in an independent dataset. These findings demonstrate the particular value of ICA for multisensory neuroimaging research and using independent datasets to test hypotheses generated from a data-driven analysis
- …