5 research outputs found

    Glycoprotein YKL-40 : A potential biomarker of disease activity in rheumatoid arthritis during intensive treatment with csDMARDs and infliximab. Evidence from the randomised controlled NEO-RACo trial

    Get PDF
    Objective YKL-40, a chitinase-like glycoprotein associated with inflammation and tissue remodeling, is produced by joint tissues and recognized as a candidate auto-antigen in rheumatoid arthritis (RA). In the present study, we investigated YKL-40 as a potential biomarker of disease activity in patients with early RA at baseline and during intensive treatment aiming for early remission. Methods Ninety-nine patients with early DMARD-naive RA participated in the NEO-RACo study. For the first four weeks, the patients were treated with the combination of sulphasalazine, methotrexate, hydroxychloroquine and low dose prednisolone (FIN-RACo DMARD combination), and subsequently randomized to receive placebo or infliximab added on the treatment for further 22 weeks. Disease activity was evaluated using the 28-joint disease activity score and plasma YKL-40 concentrations were measured by immunoassay. Results At the baseline, plasma YKL-40 concentration was 57 +/- 37 ( mean +/- SD) ng/ml. YKL-40 was significantly associated with the disease activity score, interleukin-6 and erythrocyte sedimentation rate both at the baseline and during the 26 weeks' treatment. The csDMARD combination decreased YKL-40 levels already during the first four weeks of treatment, and there was no further reduction when the tumour necrosis factor-alpha antagonist infliximab was added on the combination treatment. Conclusions High YKL-40 levels were found to be associated with disease activity in early DMARD-naive RA and during intensive treat-to-target therapy. The present results suggest YKL-40 as a useful biomarker of disease activity in RA to be used to steer treatment towards remission.Peer reviewe

    Evidence of a causal effect of genetic tendency to gain muscle mass on uterine leiomyomata

    No full text
    Uterine leiomyomata (UL) are the most common tumours of the female genital tract and the primary cause of surgical removal of the uterus. Genetic factors contribute to UL susceptibility. To add understanding to the heritable genetic risk factors, we conduct a genome-wide association study (GWAS) of UL in up to 426,558 European women from FinnGen and a previous UL meta-GWAS. In addition to the 50 known UL loci, we identify 22 loci that have not been associated with UL in prior studies. UL-associated loci harbour genes enriched for development, growth, and cellular senescence. Of particular interest are the smooth muscle cell differentiation and proliferation-regulating genes functioning on the myocardin-cyclin dependent kinase inhibitor 1A pathway. Our results further suggest that genetic predisposition to increased fat-free mass may be causally related to higher UL risk, underscoring the involvement of altered muscle tissue biology in UL pathophysiology. Overall, our findings add to the understanding of the genetic pathways underlying UL, which may aid in developing novel therapeutics.Peer reviewe

    Genetic architecture of human plasma lipidome and its link to cardiovascular disease

    No full text
    Abstract Understanding genetic architecture of plasma lipidome could provide better insights into lipid metabolism and its link to cardiovascular diseases (CVDs). Here, we perform genome-wide association analyses of 141 lipid species (n = 2,181 individuals), followed by phenome-wide scans with 25 CVD related phenotypes (n = 511,700 individuals). We identify 35 lipid-species-associated loci (P <5 ×10−8), 10 of which associate with CVD risk including five new loci-COL5A1, GLTPD2, SPTLC3, MBOAT7 and GALNT16 (false discovery rate<0.05). We identify loci for lipid species that are shown to predict CVD e.g., SPTLC3 for CER(d18:1/24:1). We show that lipoprotein lipase (LPL) may more efficiently hydrolyze medium length triacylglycerides (TAGs) than others. Polyunsaturated lipids have highest heritability and genetic correlations, suggesting considerable genetic regulation at fatty acids levels. We find low genetic correlations between traditional lipids and lipid species. Our results show that lipidomic profiles capture information beyond traditional lipids and identify genetic variants modifying lipid levels and risk of CVD

    Genetic architecture of human plasma lipidome and its link to cardiovascular disease

    No full text

    Evidence of a causal effect of genetic tendency to gain muscle mass on uterine leiomyomata

    No full text
    corecore