21 research outputs found

    Life cycle of hake and likely management implications

    Get PDF
    -Despite its economic and social importance for Namibia and South Africa, limited documented information exists regarding key aspects of the biology of deep-water hake, including its life cycle. This study utilizes data collected through the demersal surveys of the R/V Dr Fridtjof Nansen in South Africa and F/V Blue Sea 1 in Namibia to describe the migratory patterns of deep-water hake in space and time. Furthermore the study investigates aspects of the life cycle of this important species in the Benguela region. Results show that deep-water hake spawns between the western Agulhas Bank and Elands Bay in South Africa with the main nursery ground between Hondeklip Bay and the northern tip of Orange Banks. Deep-water hake in Namibia (up to the Kunene River) and along the south coast of South Africa (eastwards to Port Alfred) originate from these grounds, and undertake long-range migrations across latitudes and longitudes, respectively. This hypothesis is supported by the finding that spawning has not been observed in Namibia and there are no small juveniles along the South African south coast from the eastern border of the Agulhas Bank. The proposed pattern implies an interconnection between the Namibian and the South African components of the stock and the consequent need for a revision of the present management regime based on the assumption of stocks confined within the respective national jurisdictions. This study has used length frequency distributions in space and time in order to investigate the life cycle, in terms of origin, movement and population structure in particular, an approach that may also be useful for other widely distributed species

    Rebuilding the Namibian hake fishery: a case for collaboration between scientists and fishermen

    Get PDF
    One of the most important fisheries in the northern Benguela is the Namibian hake fishery, which targets both Merluccius capensis and Merluccius paradoxus. In spite of attempts to rebuild the hake stocks that were severely depleted by distant-water fleets before Namibia's independence in 1990, stocks have failed to recover. Because the ecological goal of stock rebuilding competes with social and economic objectives on the political stage, the ability to make accurate abundance estimates is important. However, the precision of abundance estimates is impeded by lack of understanding of hake behavior and of the effects of environmental factors. Furthermore, at present both species of hake are assessed and managed as one Namibian stock. We present qualitative information derived from interviews that we conducted with Namibian hake trawl and longline fishers during the 2009 and 2010 fishing seasons, and information gleaned from analyzing logbook data. We contextualize both types of data within the scientific literature on Namibian hakes and the Namibian hake fishery. Fishers monitor sea surface and bottom temperature, water quality, currents, and weather, and they have detailed knowledge about the behavior and habitat of hakes. Fishers differentiate between three different types of M. capensis, which they associate with different fishing areas. They also describe innovations that have taken place over the past 20 years, which are of relevance to the assessment of fishing efficiency and effort, but have not been taken into account in the stock assessments. Our analysis of logbook data supports the increase in efficiency. The results show that closer collaboration between scientists and fishers has the potential to improve the accuracy of survey estimates and stock assessments, and thus is important for rebuilding of hake stocks and the hake fishery

    Trawl fishing impacts on the status of seabed fauna in diverse regions of the globe

    Get PDF
    Bottom trawl fishing is a controversial activity. It yields about a quarter of the world's wild seafood, but also has impacts on the marine environment. Recent advances have quantified and improved understanding of large-scale impacts of trawling on the seabed. However, such information needs to be coupled with distributions of benthic invertebrates (benthos) to assess whether these populations are being sustained under current trawling regimes. This study collated data from 13 diverse regions of the globe spanning four continents. Within each region, we combined trawl intensity distributions and predicted abundance distributions of benthos groups with impact and recovery parameters for taxonomic classes in a risk assessment model to estimate benthos status. The exposure of 220 predicted benthos-group distributions to trawling intensity (as swept area ratio) ranged between 0% and 210% (mean = 37%) of abundance. However, benthos status, an indicator of the depleted abundance under chronic trawling pressure as a proportion of untrawled state, ranged between 0.86 and 1 (mean = 0.99), with 78% of benthos groups > 0.95. Mean benthos status was lowest in regions of Europe and Africa, and for taxonomic classes Bivalvia and Gastropoda. Our results demonstrate that while spatial overlap studies can help infer general patterns of potential risk, actual risks cannot be evaluated without using an assessment model that incorporates trawl impact and recovery metrics. These quantitative outputs are essential for sustainability assessments, and together with reference points and thresholds, can help managers ensure use of the marine environment is sustainable under the ecosystem approach to management

    REVIEW OF THE CENTRAL AND SOUTH ATLANTIC SHELF AND DEEP-SEA BENTHOS: SCIENCE, POLICY, AND MANAGEMENT

    Get PDF
    The Central and South Atlantic represents a vast ocean area and is home to a diverse range of ecosystems and species. Nevertheless, and similar to the rest of the global south, the area is comparatively understudied yet exposed to increasing levels of multisectoral pressures. To counteract this, the level of scientific exploration in the Central and South Atlantic has increased in recent years and will likely continue to do so within the context of the United Nations (UN) Decade of Ocean Science for Sustainable Development. Here, we compile the literature to investigate the distribution of previous scientific exploration of offshore (30 m+) ecosystems in the Central and South Atlantic, both within and beyond national jurisdiction, allowing us to synthesise overall patterns of biodiversity. Furthermore, through the lens of sustainable management, we have reviewed the existing anthropogenic activities and associated management measures relevant to the region. Through this exercise, we have identified key knowledge gaps and undersampled regions that represent priority areas for future research and commented on how these may be best incorporated into, or enhanced through, future management measures such as those in discussion at the UN Biodiversity Beyond National Jurisdiction negotiations. This review represents a comprehensive summary for scientists and managers alike looking to understand the key topographical, biological, and legislative features of the Central and South Atlantic.This paper is an output of the UN Ocean Decade endorsed Challenger 150 Programme (#57). Challenger 150 is supported by the Deep Ocean Stewardship Initiative (DOSI) and the Scientific Committee on Oceanic Research’s (SCOR) working group 159 (NSF Grant OCE-1840868) for which KLH is co-chair. AEHB, KLH, KAM, SBu, and KS are supported by the UKRI funded One Ocean Hub NE/S008950/1. TA is supported by the BiodivRestore ERA-NET Cofund (GA N°101003777) with the EU and the following funding organisations: FCT, RFCT, AEI, DFG, and ANR. TA also acknowledges financial support to CESAM by FCT/MCTES (UIDP/50017/2 020+UIDB/50017/2020+ LA/P/0094/2020) through national funds. NB is supported by the John Ellerman Foundation. AB is supported by the German Research Foundation. DH, CO, AFB, LA, SBr, and KS received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 818123 (iAtlantic); this output reflects only the author’s view and the European Union cannot be held responsible for any use that may be made of the information contained therein. DH, AF, JT, and CW were additionally supported through the Cluster of Excellence “The Ocean Floor – Earth’s Uncharted Interface” (EXC-2077 – 390741603 by Deutsche Forschungsgemeinschaft). CO also extends thanks to the HWK – Institute for Advanced Study, and PM to Dr. Alberto Martín, retired professor of Universidad Simón Bolívar in Caracas, Venezuela for facilitating references used in the Venezuela section.Peer reviewe

    Bottom trawl fishing footprints on the world’s continental shelves

    Get PDF
    Publication history: Accepted - 23 August 2018; Published online - 8 October 2018.Bottom trawlers land around 19 million tons of fish and invertebrates annually, almost one-quarter of wild marine landings. The extent of bottom trawling footprint (seabed area trawled at least once in a specified region and time period) is often contested but poorly described. We quantify footprints using high-resolution satellite vessel monitoring system (VMS) and logbook data on 24 continental shelves and slopes to 1,000-m depth over at least 2 years. Trawling footprint varied markedly among regions: from <10% of seabed area in Australian and New Zealand waters, the Aleutian Islands, East Bering Sea, South Chile, and Gulf of Alaska to >50% in some European seas. Overall, 14% of the 7.8 million-km2 study area was trawled, and 86% was not trawled. Trawling activity was aggregated; the most intensively trawled areas accounting for 90% of activity comprised 77% of footprint on average. Regional swept area ratio (SAR; ratio of total swept area trawled annually to total area of region, a metric of trawling intensity) and footprint area were related, providing an approach to estimate regional trawling footprints when highresolution spatial data are unavailable. If SAR was ≤0.1, as in 8 of 24 regions, therewas >95% probability that >90%of seabed was not trawled. If SAR was 7.9, equal to the highest SAR recorded, there was >95% probability that >70% of seabed was trawled. Footprints were smaller and SAR was ≤0.25 in regions where fishing rates consistently met international sustainability benchmarks for fish stocks, implying collateral environmental benefits from sustainable fishing.Funding for meetings of the study group and salary support for R.O.A. were provided by the following: David and Lucile Packard Foundation; the Walton Family Foundation; the Alaska Seafood Cooperative; American Seafoods Group US; Blumar Seafoods Denmark; Clearwater Seafoods Inc.; Espersen Group; Glacier Fish Company LLC US; Gortons Seafood; Independent Fisheries Limited N.Z.; Nippon Suisan (USA), Inc.; Pesca Chile S.A.; Pacific Andes International Holdings, Ltd.; San Arawa, S.A.; Sanford Ltd. N.Z.; Sealord Group Ltd. N.Z.; South African Trawling Association; Trident Seafoods; and the Food and Agriculture Organisation of the United Nations. Additional funding to individual authors was provided by European Union Project BENTHIS EU-FP7 312088 (to A.D.R., O.R.E., F.B., N.T.H., L.B.-M., R.C., H.O.F., H.G., J.G.H., P.J., S.K., M.L., G.G.-M., N.P., P.E.P., T.R., A.S., B.V., and M.J.K.); the Instituto Português do Mar e da Atmosfera, Portugal (C.S.); the International Council for the Exploration of the Sea Science Fund (R.O.A. and K.M.H.); the Commonwealth Scientific and Industrial Research Organisation (C.R.P. and T.M.); the National Oceanic and Atmospheric Administration (R.A.M.); New Zealand Ministry for Primary Industries Projects BEN2012/01 and DAE2010/ 04D (to S.J.B. and R.F.); the Institute for Marine and Antarctic Studies, University of Tasmania and the Department of Primary Industries, Parks, Water and Environment, Tasmania, Australia (J.M.S.); and UK Department of Environment, Food and Rural Affairs Project MF1225 (to S.J.)
    corecore