2,058 research outputs found

    Nanoparticle surface charge impacts distribution, uptake and lymph node trafficking by pulmonary antigen-presenting cells

    Get PDF
    AbstractEngineered nanoparticles have the potential to expand the breadth of pulmonary therapeutics, especially as respiratory vaccines. Notably, cationic nanoparticles have been demonstrated to produce superior local immune responses following pulmonary delivery; however, the cellular mechanisms of this increased response remain unknown. To this end, we investigated the cellular response of lung APCs following pulmonary instillation of anionic and cationic charged nanoparticles. While nanoparticles of both surface charges were capable of trafficking to the draining lymph node and were readily internalized by alveolar macrophages, both CD11b and CD103 lung dendritic cell (DC) subtypes preferentially associated with cationic nanoparticles. Instillation of cationic nanoparticles resulted in the upregulation of Ccl2 and Cxc10, which likely contributes to the recruitment of CD11b DCs to the lung. In total, these cellular mechanisms explain the increased efficacy of cationic formulations as a pulmonary vaccine carrier and provide critical benchmarks in the design of pulmonary vaccine nanoparticles.From the Clinical EditorAdvance in nanotechnology has allowed the production of precise nanoparticles as vaccines. In this regard, pulmonary delivery has the most potential. In this article, the authors investigated the interaction of nanoparticles with various types of lung antigen presenting cells in an attempt to understand the cellular mechanisms. The findings would further help the future design of much improved vaccines for clinical use

    Controlled analysis of nanoparticle charge on mucosal and systemic antibody responses following pulmonary immunization

    Get PDF
    To our knowledge, no other nano-based vaccine delivery platform has directly assessed the effects of nanoparticle charge on pulmonary vaccination without affecting other physio/chemical particle characteristics and/or antigen loading. The Particle Replication in Non-Wetting Templates nanoparticle fabrication process is unique in that it allows for isolation of charge as the sole variable in these studies while maintaining all other physical and chemical parameters constant. We find that positively charged nanoparticles induce robust mucosal and systemic antibody responses following pulmonary administration, whereas negatively charged nanoparticles fail to do so. Therefore, our studies underscore the importance of considering nanoparticle charge as a critical design parameter when generating pulmonary-based vaccines and may have implications for particulate vaccination through other routes of administration

    Evaluating a Novel Class of Biomaterials: Magnesium-Containing Layered Double Hydroxides

    Get PDF
    Metallic magnesium and compounds such as magnesium hydroxide Mg(OH)2 have been shown to have osteoconductive properties under experimental conditions and are gaining an increasing interest in the field of degradable biomaterials. The application of the compounds as implant coatings could support implant incorporation, resulting in an increased period of use of the implants. A variety of Mg-containing Layered Double Hydroxides (Mg-LDHs) has been synthesized and examined. These materials have been tested in various in vitro and in vivo studies; the latter took place in different sites like in the middle ear or in the condyle of New Zealand White Rabbits. In the latest study newly formed bone could be found around the Mg-Al-CO3-LDH pellets, making it a promising compound for bone-healing applications.DFG/SFB/59

    Stimulation of the cuneiform nucleus enables training and boosts recovery after spinal cord injury

    Full text link
    Severe spinal cord injuries result in permanent paraparesis in spite of the frequent sparing of small portions of white matter. Spared fibre tracts are often incapable of maintaining and modulating the activity of lower spinal motor centres. Effects of rehabilitative training thus remain limited. Here, we activated spared descending brainstem fibres by electrical deep brain stimulation of the cuneiform nucleus of the mesencephalic locomotor region, the main control centre for locomotion in the brainstem, in adult female Lewis rats. We show that deep brain stimulation of the cuneiform nucleus enhances the weak remaining motor drive in highly paraparetic rats with severe, incomplete spinal cord injuries and enables high-intensity locomotor training. Stimulation of the cuneiform nucleus during rehabilitative aquatraining after subchronic (n = 8 stimulated versus n = 7 unstimulated versus n = 7 untrained rats) and chronic (n = 14 stimulated versus n = 9 unstimulated versus n = 9 untrained rats) spinal cord injury re-established substantial locomotion and improved long-term recovery of motor function. We additionally identified a safety window of stimulation parameters ensuring context-specific locomotor control in intact rats (n = 18) and illustrate the importance of timing of treatment initiation after spinal cord injury (n = 14). This study highlights stimulation of the cuneiform nucleus as a highly promising therapeutic strategy to enhance motor recovery after subchronic and chronic incomplete spinal cord injury with direct clinical applicability

    Distribution and Cellular Uptake of PEGylated Polymeric Particles in the Lung Towards Cell-Specific Targeted Delivery

    Get PDF
    We evaluated the role of a poly(ethylene glycol) (PEG) surface coating to increase residence times and alter the cellular fate of nano- and microparticles delivered to the lung

    Nanoparticle clearance is governed by Th1/Th2 immunity and strain background

    Get PDF
    Extended circulation of nanoparticles in blood is essential for most clinical applications. Nanoparticles are rapidly cleared by cells of the mononuclear phagocyte system (MPS). Approaches such as grafting polyethylene glycol onto particles (PEGylation) extend circulation times; however, these particles are still cleared, and the processes involved in this clearance remain poorly understood. Here, we present an intravital microscopy–based assay for the quantification of nanoparticle clearance, allowing us to determine the effect of mouse strain and immune system function on particle clearance. We demonstrate that mouse strains that are prone to Th1 immune responses clear nanoparticles at a slower rate than Th2-prone mice. Using depletion strategies, we show that both granulocytes and macrophages participate in the enhanced clearance observed in Th2-prone mice. Macrophages isolated from Th1 strains took up fewer particles in vitro than macrophages from Th2 strains. Treating macrophages from Th1 strains with cytokines to differentiate them into M2 macrophages increased the amount of particle uptake. Conversely, treating macrophages from Th2 strains with cytokines to differentiate them into M1 macrophages decreased their particle uptake. Moreover, these results were confirmed in human monocyte–derived macrophages, suggesting that global immune regulation has a significant impact on nanoparticle clearance in humans

    Program for overvåking av fiskefôr - Årsapport for prøver innsamlet i 2020

    Get PDF
    Overvåknings- og kartleggingsprogrammet for fiskefôr utføres på vegne av Mattilsynet. I 2020 ankom det 85 fiskefôr, 9 fiskemel, 9 vegetabilske mel, 10 fiskeoljer, 8 vegetabilske oljer, 4 insektmel og 16 premikser som ble analysert for forbudte stoffer, mikrobiologisk kvalitet, en rekke uønskede stoffer, tilsetningsstoffer og næringsstoffer. Årets rapport er i en ny utgave, der resultatene presenteres i et kortere format, som en overgang til en ny versjon. Resultatene fra årets analyser viser at det er ingen overskridelser av øvre grenseverdier satt i regelverket for uønskede organiske eller uorganiske stoffer. Det ble registrert forhøyede konsentrasjoner av prosesseringskontaminantene PAH i to vegetabilske fôrmiddel, og registrert tilstedeværelse av det nå utfasede tilsetningsstoffet ethoxyquin (EQ) i flere prøver av fullfôr og i ett fiskemel. I 2020 var fokus næringsstoffer, og det ble analysert for en rekke mineraler, vitaminer og fettsyrer. For fettsyreprofilene i fullfôr ble sum EPA og DHA sett å være over antatt minimumsbehov hos laks, og forholdet mellom n-3 og n-6 var noe høyere for årets prøver sammenlignet med 2018 og 2019. Resultatene for vitamin C, vitamin E, og vitamin K i fullfôr tyder på fisken får dekket sitt behov gjennom fôret, mens nivåene av noen av B-vitaminene, særlig folat og cobalamin, er vurdert som lave i forhold til behovet til fisken, særlig om fôrene er plantebaserte.publishedVersio

    Roquin Paralogs 1 and 2 Redundantly Repress the Icos and Ox40 Costimulator mRNAs and Control Follicular Helper T Cell Differentiation

    Get PDF
    SummaryThe Roquin-1 protein binds to messenger RNAs (mRNAs) and regulates gene expression posttranscriptionally. A single point mutation in Roquin-1, but not gene ablation, increases follicular helper T (Tfh) cell numbers and causes lupus-like autoimmune disease in mice. In T cells, we did not identify a unique role for the much lower expressed paralog Roquin-2. However, combined ablation of both genes induced accumulation of T cells with an effector and follicular helper phenotype. We showed that Roquin-1 and Roquin-2 proteins redundantly repressed the mRNA of inducible costimulator (Icos) and identified the Ox40 costimulatory receptor as another shared mRNA target. Combined acute deletion increased Ox40 signaling, as well as Irf4 expression, and imposed Tfh differentiation on CD4+ T cells. These data imply that both proteins maintain tolerance by preventing inappropriate T cell activation and Tfh cell differentiation, and that Roquin-2 compensates in the absence of Roquin-1, but not in the presence of its mutated form

    The very forward hadron calorimeter PSD for the future CBM@FAIR experiment

    Get PDF
    The Projectile Spectator Detector (PSD) of the CBM experiment at the future FAIR facility is a compensating lead-scintillator calorimeter designed to measure the energy distribution of the forward going projectile nucleons and nuclei fragments (reaction spectators) produced close to the beam rapidity. The detector performance for the centrality and reaction plane determination is re- viewed based on Monte-Carlo simulations of gold-gold collisions by means of four different heavy-ion event generators. The PSD energy resolution and the linearity of the response measured at CERN PS for the PSD supermodule consisting of 9 modules are presented. Predictions of the calorimeter radiation conditions at CBM and response measurement of one PSD module equipped with neutron irradiated MPPCs used for the light read out are discussed

    Evaluation of drug loading, pharmacokinetic behavior, and toxicity of a cisplatin-containing hydrogel nanoparticle

    Get PDF
    Cisplatin is a cytotoxic drug used as a first-line therapy for a wide variety of cancers. However, significant renal and neurological toxicities limits it clinical use. It has been documented that drug toxicities can be mitigated through nanoparticle formulation, while simultaneously increasing tumor accumulation through the enhanced permeation and retention effect. Circulation persistence is a key characteristic for exploiting this effect, and to that end we have developed long-circulating, PEGylated, polymeric hydrogels using the Particle Replication In Non-wetting Templates (PRINT®) platform and complexed cisplatin into the particles (PRINT-Platin). Sustained release was demonstrated, and drug loading correlated to surface PEG density. A PEG Mushroom conformation showed the best compromise between particle pharmacokinetic (PK) parameters and drug loading (16 wt %). While the PK profile of PEG Brush was superior, the loading was poor (2 wt %). Conversely, the drug loading in non-PEGylated particles was better (20 wt %), but the PK was not desirable. We also showed comparable cytotoxicity to cisplatin in several cancer cell lines (non-small cell lung, A549; ovarian, SKOV-3; breast, MDA-MB-468) and a higher MTD in mice (10 mg/kg versus 5 mg/kg). The pharmacokinetic profiles of drug in plasma, tumor, and kidney indicate improved exposure in the blood and tumor accumulation, with concurrent renal protection, when cisplatin was formulated in a nanoparticle. PK parameters were markedly improved: a 16.4-times higher area-under-the-curve (AUC), a reduction in clearance (CL) by a factor of 11.2, and a 4.20-times increase in the volume of distribution (Vd). Additionally, non-small cell lung and ovarian tumor AUC was at least twice that of cisplatin in both models. These findings suggest the potential for PRINT-Platin to improve efficacy and reduce toxicity compared to current cisplatin therapies
    corecore