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Abstract

Cisplatin is a cytotoxic drug used as a first-line therapy for a wide variety of cancers. However, 

significant renal and neurological toxicities limits it clinical use. It has been documented that drug 

toxicities can be mitigated through nanoparticle formulation, while simultaneously increasing 

tumor accumulation through the enhanced permeation and retention effect. Circulation persistence 

is a key characteristic for exploiting this effect, and to that end we have developed long-

circulating, PEGylated, polymeric hydrogels using the Particle Replication In Non-wetting 

Templates (PRINT®) platform and complexed cisplatin into the particles (PRINT-Platin). 

Sustained release was demonstrated, and drug loading correlated to surface PEG density. A PEG 

Mushroom conformation showed the best compromise between particle pharmacokinetic (PK) 

parameters and drug loading (16 wt %). While the PK profile of PEG Brush was superior, the 

loading was poor (2 wt %). Conversely, the drug loading in non-PEGylated particles was better 

(20 wt %), but the PK was not desirable. We also showed comparable cytotoxicity to cisplatin in 

several cancer cell lines (non-small cell lung, A549; ovarian, SKOV-3; breast, MDA-MB-468) 

and a higher MTD in mice (10 mg/kg versus 5 mg/kg). The pharmacokinetic profiles of drug in 

plasma, tumor, and kidney indicate improved exposure in the blood and tumor accumulation, with 

concurrent renal protection, when cisplatin was formulated in a nanoparticle. PK parameters were 

markedly improved: a 16.4-times higher area-under-the-curve (AUC), a reduction in clearance 

(CL) by a factor of 11.2, and a 4.20-times increase in the volume of distribution (Vd). 
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Additionally, non-small cell lung and ovarian tumor AUC was at least twice that of cisplatin in 

both models. These findings suggest the potential for PRINT-Platin to improve efficacy and 

reduce toxicity compared to current cisplatin therapies.

Keywords

Introduction

Cisplatin has played an important role as a “broad-spectrum” chemotherapeutic in the 

treatment of many cancers.[1] The side-effects are not trivial, however, and include 

significant neurological and renal toxicities, the latter being dose-limiting.[2] Incorporating 

the drug into a nanoparticle can increase tumor accumulation while simultaneously reducing 

side effects caused by systemic exposure.[3]

The key characteristic for this passive targeting of nanoparticles to tumors—an important 

facet of chemotherapeutic delivery—is circulation persistence. The common accepted theory 

of passive accretion is referred to as the enhanced permeation and retention (EPR) effect. 

First recognized in 1986, it was attributed to hypervasculature, enhanced permeability, and 

little recovery through either venous or lymphatic drainage.[4] This theory suggests that, 

given enough time, circulating macromolecules and nanoparticles will eventually deposit in 

the tumor bed. The first documented definition of EPR involved a study with proteins, but 

wide application to nano- and microparticles has since been explored.[5–10] In addition to 

selective accumulation, other advantages of nano-formulations over soluble drug include 

increased exposure through altered pharmacokinetics (PK), greater solubility and 

biocompatibility, and higher therapeutic index.[11–15]

Non-small cell lung and ovarian are two types of cancer commonly treated with cisplatin.

[16] An orthotopic model of lung cancer has several advantages over a subcutaneous model. 

Instilling cells into the organ of origination provides the appropriate microenvironment, 

allowing for relevant biological interactions and implications.[17,18] Carefully specifying 

both the type and location of cancer increases the ability to correlate potential efficacy with 

particle distribution and kinetics.

Several other factors, however, also dictate the behavior of a particle once injected; these 

include size, elastic modulus, shape, charge, and surface chemistry (see Refs. [19–22] for 

comprehensive reviews). The effect of size on circulation has been well documented, and 

evidence has mounted in favor of particles less than 100 nm in at least one critical 

dimension for blood persistance.[23– 25] Particle modulus is also important for sterile 

filtration techniques in formulation preparation and navigating the mechanical barriers of the 

liver and spleen.[26–30] The role of shape has been elusive due to a shortage of methods for 

precise shape control. Previous studies have alluded to the effect of particle geometry, most 

notably studies of high-aspect ratio particles that showed increased circulation time with 

increasing length.[31,32] These studies have been the driving force behind utilizing worm-

like particles for EPR studies, but calibration-quality fabrication of filamentous geometry 

and modulus is difficult.[33,34] Surface charge plays a major role in particle stability and 
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biological interactions; cationic particles are more toxic to red blood cells and cause platelet 

aggregation compared to neutral or anionic particles.[35] PEGylation, a polymer surface 

coating of repeating ethylene glycol units, is a common surface modification utilized to 

reduce protein binding (opsonization), increase hydrophilicity and stability, and extend 

circulation half-life.[14,36–38] Finally, the interplay between these characteristics 

complicates studies even further; synergistic or dysergistic effects may be difficult to 

observe without precise control over all variables.

Particle Replication in Non-wetting Templates (PRINT®) is a calibration-quality tool that 

enables complete, orthogonal control over particle characteristics.[39,40] The capacity of 

PRINT to independently and systematically vary parameters is a crucial advantage in 

determining exactly how a given variable affects nanoparticle behavior. The modulus, 

shape, and surface chemistry of PRINT hydrogels were previously optimized with different 

PEGylation conformations (non-PEGylated, PEG Mushroom, and PEG Brush).[27,41] The 

aim of this study was to investigate the effect of surface PEG density on the loading and 

release of cisplatin from nanoparticles, and subsequently determine the in vivo behavior of 

the optimal formulation. Herein we report a platform and method for novel complexation 

and release of cisplatin from a PRINT hydrogel nanoparticle (PRINT-Platin).

Materials and Methods

Materials

Commercially available polyethylene glycol diacrylate (PEG700-DA, Mn=700 Da), 2-

aminoethyl methacrylate hydrochloride (AEM), diphenyl(2,4,6-trimethylbenzoyl)-phosphine 

oxide (TPO), polyvinyl alcohol (PVOH, Mn=2000 Da), succinic anhydride, cis-

diaminedichloroplatinum(II) (CDDP), and sucrose were purchased from Sigma-Aldrich. 

PTFE syringe filters (13mm membrane, 0.220 µm pore size), dimethylformamide (DMF), 

triethanolamine (TEA), pyridine, sterile water, borate buffer (pH 8.6), methanol, and trace-

metal grade concentrated nitric acid (HNO3) were obtained from Fisher Scientific. Methoxy 

PEG (5k)-succinimidyl carboxy methyl ester (mPEG5k-SCM) was purchased from Creative 

PEGWorks. Tetraethylene glycol monoacrylate (HP4A) was synthesized in-house as 

previously described.[42] Conventional filters (2 µm) were purchased from Agilent, and 

polyvinyl alcohol (Mw 2000) (PVOH) was purchased from Acros Organics. PRINT molds 

(80 nm × 320 nm) were obtained from Liquidia Technologies (RTP, NC). Polyethylene 

terephthalate (PET) was purchased in 1000-foot rolls from 3M. Cisplatin was acquired from 

the University of North Carolina Pharmacy. Water, where used, was sterile-grade and 0.2-

µm filtered. Cells (A549-luc, SKOV-3, and MDA-MB-468) were purchased from American 

Type Culture Collection. Fetal bovine serum was purchased from Atlanta Biologicals. RPMI 

1640 Medium was purchased from Gibco®; Leibovitz’s L-15 and McCoy’s 5A Media were 

purchased from Corning cellgro®. All commercially available materials were used as 

received.

Fabrication, functionalization, and complexation

The PRINT particle fabrication technique has been described previously in detail.[41,43] 

Briefly, a preparticle solution (PPS) was prepared by dissolving various reactive monomers 
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in methanol. The PPS “solids” were comprised of 69 wt% HP4A, 20 wt% AEM, 10 wt% 

PEG700DA, and 1 wt% TPO. A thin film of the PPS was drawn onto PET, laminated to the 

patterned side of the mold, and delaminated at the laminator nip roll. Particles were cured by 

passing the filled mold through a UV-LED (Phoseon). A PVOH harvesting sheet was hot 

laminated to the filled mold and cooled to room temperature (r.t.), and particles were 

removed from the mold by splitting the PVOH harvesting sheet from the mold. Particles 

were then harvested by dissolving the PVOH in water and passed through a 2 µm filter 

(Agilent) to remove any large particulates. To remove the excess PVOH, particles were 

centrifuged (Eppendorf Centrifuge 5417R) at ca. 21,000 × g for 15 minutes at 4 °C, the 

supernatant was removed, and the particles were re-suspended in sterile water. This 

purification process was repeated two times in water, followed by three times in DMF, to 

prepare particles for PEGylation and succinylation.

The particles (1 mg/mL) were reacted with excess TEA for 10 minutes at r.t. on a shaker 

plate (Eppendorf, 1400 rpm). The mPEG5k-SCM was dissolved in DMF (14 mg for PEG 

Brush; 2.05 mg for PEG Mushroom, previously optimized [41]; none for non-PEGylated 

and non-succinylated) and added to the reaction mixture. The reaction mixture was shaken 

overnight and quenched with borate buffer (100 µL). The nanoparticle suspension was then 

washed three times with DMF via centrifugation. Particles were succinylated by reaction 

with an excess of pyridine and succinic anhydride (100X molar excess with respect to amine 

groups; no succinic anhydride was added to non-succinylated particles). The reaction was 

carried out in a sonicator bath (Branson Ultrasonic Cleaner 1.4 A, 160 W) for 30 minutes. 

Following succinylation, the particles were washed by centrifugation once in DMF, 

followed by a borate buffer wash to neutralize any succinic acid side product, and then three 

washes with sterile water.

Cisplatin complexation was achieved by incubating the particles in a solution of CDDP (2X 

molar excess with respect to carboxyl groups) in water at r.t. for >24 hours under constant 

agitation (Eppendorf, 1400 rpm). After incubation in the complexation solution, particles 

were washed with sterile water by centrifugation and resuspended in 9.25 wt% sucrose (aq) 

at the appropriate dose concentration. Aliquots were flash frozen in liquid nitrogen and 

stored at −20 °C until needed.

Characterization

Particle concentrations were determined by thermogravimetric analysis (TGA) using a TA 

Instruments Q5000 analyzer. Particles were visualized via scanning electron microscopy 

(SEM) using a Hitachi S-4700 microscope. Prior to imaging, SEM samples were coated with 

1.5 nm of gold-palladium alloy using a Cressington 108 auto sputter coater. Particle size and 

zeta potential were measured by dynamic light scattering (DLS) on a Zetasizer Nano ZS 

(Malvern Instruments, Ltd.) at 37 °C.

For release studies, PRINT-Platin was incubated at 1 mg/mL in PBS buffer on a shaker at 

1400 rpm, 37 °C (n=3 per particle type). An aliquot was taken from each sample at 24, 48, 

72, and 168 hours. The sample aliquot was centrifuged (ca. 21,000 × g, 15 minutes, 4 °C) to 

isolate cisplatin in the supernatant released from the particle pellet. The supernatant samples 

were stored before analysis.
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Cisplatin loading and release were assessed using an Agilent 1200 series high-performance 

liquid chromatography (HPLC) system with an ultraviolet detector. The mobile phase 

consisted of 90 % 0.9-wt% NaCl (aq) and 10 % methanol, by volume. A five minute 

isocratic elution protocol was used with a ZORBAX Eclipse Plus C18 column (Agilent 

Technologies). The product was eluted at a flow rate of 1 mL/min and monitored at a 

wavelength of 210 nm. Drug loading was determined by analysis of the complexation 

solution pre- and post-incubation. The net difference in cisplatin concentration was 

calculated as weight percent in the particle.

Cytotoxicity

Cells were seeded in 200 µL of media [RMPI 1640 Medium for A549; McCoy’s 5A 

Medium for SKOV-3; Leibovitz’s L-15 Medium for MDA-MB-468; all media was 

supplemented with 10 % fetal bovine serum] at a density of 5000 cells per cm2 into a 96-

well microtiter plate. Cells were allowed to adhere for 24 hours and subsequently incubated 

with either PRINT-Platin or cisplatin at concentrations ranging from 9.8 nM to 80 µM (drug 

concentration) for 72 hours at 37 °C in a humidified 5 % CO2 atmosphere. After the 

incubation period, all media/particles were aspirated off cells. 100 µL fresh medium was 

added back to cells, followed by the addition of 100 µL CellTiter-Glo® Luminescent Cell 

Viability Assay reagent (Promega, Madison, WI). Plates were placed on a microplate shaker 

for 2 minutes, then incubated at r.t. for 10 minutes to stabilize luminescent signal. The 

luminescent signal was recorded on a Molecular Dynamics SpectraMax M5 plate reader. 

The viability of the cells was expressed as a percentage of the viability of cells grown in the 

absence of particles or drug.

Animals

All experiments involving mice were performed in accordance with the National Research 

Council’s Guide to Care and Use of Laboratory Animals (1996), under an animal use 

protocol approved by the University of North Carolina Animal Care and Use Committee. 

All studies used female Foxn1nu (athymic nude, C57BL/6J background) mice (5 weeks old, 

17–27 g, Jackson Laboratory). For the tumor accumulation PK study, an orthotopic non-

small cell lung (A549-luc) model and a subcutaneous ovarian (SKOV-3) model were used. 

Cell cultures were prepared and maintained per vendor specifications. For the orthotopic 

lung model, a 40-µL suspension of luciferase-expressing A549 cells (5 × 106 cells per 

mouse in a 50:50 Matrigel:PBS blend) was implanted into the lung via intra-thoracic 

inoculations, as previously described.[18] For the subcutaneous ovarian model, a 200-µL 

suspension of SKOV-3 cells (5 × 106 cells per mouse in a 50:50 Matrigel:PBS blend) was 

injected into the left flank of the mice. Tumor growth was monitored by bioluminescence 

(A549) or volume (SKOV3) via caliper measurements (L2 × W/2).

Pharmacokinetic study in healthy mice

PRINT-Platin or cisplatin was dosed via tail vein injections at 3 mg drug per kg of mouse 

weight in naïve animals based on drug amount. Nanoparticles were injected as a suspension 

in an isotonic sucrose solution (9.25 wt%), and cisplatin was dosed in prescription form 

(pH-adjusted 0.9 wt% NaCl solution). Liver, spleen, and kidney were harvested and flash-

frozen in liquid nitrogen at 0.083, 0.5, 1, 6, 24, and 72 hours post-injection. Four mice per 
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arm were examined at each time point. Blood was collected in EDTA by cardiac puncture at 

the same time points and centrifuged (300 × g, 5 minutes, 4 °C) to isolate plasma from the 

cell fraction. A portion of the plasma samples from the soluble drug arm was set aside to 

separate protein-bound cisplatin from unbound cisplatin. For the separation of protein-bound 

cisplatin from unbound cisplatin, plasma was pipetted into a Centrifree ultracentrifugation 

device (EMD Millipore Co.) and centrifuged at 2500 × g for 30 minutes at 25 °C.

Pharmacokinetic analysis of the measured plasma concentrations was performed using 

PKSolver.[44] Data was fit to either a one- or two-compartment model, and the Akaike 

information criterion (AIC) was used to compare goodness of fit for each nanoparticle type.

[45]

Tumor accumulation

Once tumors had reached sufficient size post-tumor inoculation, mice were randomized into 

dosing groups. PRINT-Platin or cisplatin was dosed via tail vein injections at the maximum 

tolerated dose (MTD), based on drug amount. Tumors were harvested and flash-frozen in 

liquid nitrogen at 0.083, 0.5, 1, 6, 24, and 72 hours post-injection. Four mice per arm were 

examined at each time point.

Maximum tolerated dose (MTD)

Cisplatin or PRINT-Platin (n=3) was dosed intravenously in naïve mice via tail-vein once 

per week for six weeks. Acceptable body weight loss was specified as ≤20 %, per protocol 

guidelines. Injections and animal welfare monitoring were performed with the assistance of 

the Animal Studies Core (UNC-CH).

ICP-MS validation, quantification, and analysis

Tissue sample preparation was performed as previously described.[46] Briefly, tissue 

(kidney, tumor, liver, spleen) and plasma samples were digested in concentrated HNO3 

spiked with 200 ng/mL Iridium (Ir; analytical internal standard, Inorganic Ventures, 

Christiansburg, VA) for 60–90 minutes at 90 °C. Deionized water was added to bring 

sample to volume and HNO3 concentration of 3.5 %, and the samples were stored at 4 °C 

until platinum (Pt) analysis was completed. Inductively-coupled plasma mass spectroscopy 

(ICP-MS) analysis (Agilent 7500cx) was performed and validated as previously described.

[46,47]

Results and Discussion

Characterization and drug release of calibration-quality nanoparticles

Incorporation of cisplatin into PRINT hydrogels was achieved via ligand exchange of a 

chloride atom on the drug with a carboxyl group within the particle matrix (Figure 1). 

Complexation of cisplatin into a matrix was previously shown in micelles containing 

aspartic acid and was demonstrated by this group using a PEG-based hydrogel.[48]

Since hydrogels swell based upon composition and conditions, it was important to monitor 

the particles for any changes during production. Demonstration of stability in the solid-state 
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form was also important for long-term storage potential. Figure 2 shows a representative 

comparison of SEM images and DLS measurements for purified particles after harvest and 

cisplatin-loaded particles that were flash frozen in sucrose. These measurements indicate 

that particle integrity was maintained throughout the functionalization and complexation 

process, with no apparent change in particle characteristics. This validation of the 

morphology, size, and stability provides confirmation of an effective and suitable process 

for formulation and storage of cisplatin-loaded, PEGylated PRINT hydrogels.

The loading and release of cisplatin as a function of surface PEG conformation was then 

investigated via HPLC. An inverse correlation between PEG density and drug loading was 

observed; cisplatin content increased as PEGylation decreased (Figure 3A). Although non-

PEGylated particles afforded the highest drug loading, previous studies revealed that the in 

vivo PK was quite poor compared to PEG Brush and PEG Mushroom particles.[41] These 

studies showed an increase of 200-times and 136-times the clearance of PEG Brush and 

PEG Mushroom particles, respectively. Furthermore, the exposure (area under the curve 

[AUC]) was reduced by a factor of 127 and 86 over Brush and Mushroom conformations, 

respectively. Conversely, although the PEG Brush conformation had the best PK 

parameters, it had the lowest cisplatin loading. It was hypothesized that steric hindrance 

from the thicker PEG coating on the surface prohibited cisplatin from diffusing into the 

interior of the particle. The PEG Mushroom conformation offered a moderate improvement 

in PK parameters compared to PEG Brush and only a small decrease in cisplatin loading 

compared to non-PEGylated. Thus, PEG Mushroom was considered the optimal particle—

hereafter referred to as PRINT-Platin—since it offered the best compromise between drug 

loading and circulation behavior. The release profile of cisplatin from the particles also 

supported this conclusion (Figure 3B). The majority of encapsulated drug was released from 

each particle type; demonstration of release from the carrier is vital for effective delivery. 

An additional negative control (non-succinylated particles) presented minimal release, 

which was expected since there were no carboxyl groups for cisplatin complexation.

Cytotoxicity of drug and particles on A549, SKOV-3, and MDA-MB-468

To evaluate the in vitro toxicity of the new formulation, we investigated the effects of 

PRINT-Platin on several cancer cell lines as compared to cisplatin. As discussed previously, 

the PEG Mushroom particle was used as it appeared to possess the appropriate balance 

between cisplatin content and pharmacokinetic parameters. Non-small cell lung, ovarian, 

and breast cancers were screened to demonstrate that particle effectiveness was independent 

of tumor selection. The former two diseases are approved indications of cisplatin, and the 

latter breast line represented potential future targets. The nanoparticle complex showed 

cytotoxicity in all cell lines tested, but was less toxic compared to the soluble drug (Figure 

4). This was an expected shift due to the release profile of the drug from the particle matrix. 

Cells were exposed to particles for 72 hours, at which point approximately 60% of the 

encapsulated drug would have released (Figure 3B). Blank particles showed no toxicity, 

agreeing with previous studies on PEG-based PRINT hydrogels.[49–51]

Verification that active drug is recovered in a biological setting is paramount to continued 

investigations of the formulation, as several other cisplatin-nanoparticle platforms failed to 
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achieve results due to a lack of drug release.[52,53] Coupled with HPLC analysis, the 

cytotoxicity assays confirmed in vitro release of cisplatin from PRINT-Platin.

Pharmacokinetic study in healthy mice

In order to determine the benefits of formulating cisplatin in a nanoparticle, quantitative 

analysis of the drug was performed using ICP-MS. An equimolar amount of drug was 

injected for accurate comparison of cisplatin distribution. Figure 5 portrays the plasma 

kinetics and parameters of PRINT-Platin and cisplatin. Given at the same concentration, 

PRINT-Platin was retained in the blood at a higher concentration at all time points (Figure 

5A). The pharmacokinetic (PK) parameters revealed a marked improvement in the 

circulation behavior of PRINT-Platin as compared to cisplatin (Figure 5B). There was a 

16.4-times higher exposure, expressed as area-under-the-curve (AUC), representing a higher 

total amount of drug reaching circulation. A decrease in the clearance (CL) by a factor of 

11.2 indicated slower removal of the drug from the body. Finally, the volume of distribution 

(Vd) increased by 4.20- times, which implied an apparent decrease in the amount of drug 

that was tissue-bound for the particulate form. Overall, the PK of cisplatin was vastly 

improved by the nanoparticle formulation.

Encapsulation within a vehicle is also important and affords protection of cisplatin from 

protein binding and inactivation. Figure 5C shows the majority of drug is retained within the 

particle while in circulation, potentially minimizing toxicity in non-target, healthy tissues. 

Finally, renal protection was demonstrated in the particle formulation. Figure 5D revealed 

lower kidney accumulation of PRINT-Platin compared to cisplatin. This suggests the 

potential for the nano-formulation to mitigate nephrotoxicity, increasing the therapeutic 

index to improve a patient’s quality of life and increase the tolerable drug dose, with 

implications for better efficacy.[2,54] The pharmacokinetic profile in both liver and spleen 

displayed higher accumulation of PRINT-Platin compared to cisplatin (Supplemental Figure 

1) as expected due to the enhanced sequestration of particles by these organs, however, no 

adverse toxicity was observed.

Maximum tolerated dose of drug and particles in naïve mice

The maximum tolerated dose (MTD) is also an important factor in determining the dose of a 

formulation and can be a predictor of clinical success.[55] It is also the first step in 

determining toxicity in a pre-clinical model. As shown in Figure 6, the in vivo toxicity of 

cisplatin and PRINT-Platin was determined by monitoring the body weight of mice dosed at 

varying levels of drug (3, 5, 6 mg/kg and 5, 10, 15 mg/kg for cisplatin and PRINT-Platin, 

respectively) over the course of six weekly injections. Soluble cisplatin was well-tolerated at 

3 and 5 mg/kg doses for the entirety of the study. Following the fourth dose, however, all of 

the 6 mg/kg mice dropped below the acceptable weight loss. This was in agreement with the 

MTD of cisplatin from other studies, where substantial variation was shown based on dose 

schedule and mouse strain (ranging from 9 mg/kg for a single dose to 3–6 mg/kg for 

repeated doses).[16,56,57] PRINT-Platin was tolerated at higher doses than drug alone; mice 

dosed at 5 and 10 mg/kg equivalent drug presented minimal weight loss over the course of 

the six-week treatment. Other nanoparticle formulations have been shown to also have a 

higher MTD, as systemic exposure of drug is reduced in an encapsulated form.[58–60] The 
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highest dose, 15 mg/kg, was tolerated through four doses. Shortly after the fifth dose, 

however, all mice experienced significant weight loss, indicating significant toxicity. 

Finally, a blank, non-loaded particle (equivalent concentration of the highest PRINT-Platin 

dose) showed no decline in weight. This bolstered the in vitro results, providing further 

evidence that the carrier itself has no toxic side effects.

Tumor accumulation

A study to measure the tumor delivery of cisplatin via particle or soluble form was 

undertaken. The ability to selectively accumulate drug at the site of cancer can be a predictor 

of efficacy.[61] To that end, passive delivery of cisplatin was examined in an orthotopic 

model of non-small cell lung cancer and a subcutaneous model of ovarian cancer. In both 

non-small cell lung-derived and ovarian tumor models, a trend towards higher accumulation 

of PRINT-Platin over cisplatin was observed (Figure 7). Drug was dosed at the MTD of 

each formulation: 5 mg/kg for cisplatin and 10 mg/kg for PRINT-Platin. As expected, the 

data showed that tumor exposure of cisplatin delivered via PRINT-Platin was at least twice 

as high as the soluble form. Of interest was the 2.40-times higher AUC for PRINT-Platin in 

the ovarian model, indicative of an enhanced accumulation of cisplatin when delivered in 

particulate form. In both types of tumors, the ability to transport more drug with less kidney 

accumulation would result in a higher therapeutic index. This suggests the potential for 

PRINT-Platin to have better efficacy over cisplatin in these models.

Conclusions

Cisplatin is a potent chemotherapeutic for a wide variety of tumor models, but its dose-

limiting toxicity—specifically renal failure—prevents it from being more efficacious. 

Furthermore, its continued use diminishes the patient’s standard-of-living due to neuro- and 

ototoxicity. The potential benefits of formulating the drug into a nanoparticle include 

increased tumor accumulation, prolonged circulation, and renal protection, resulting in a 

remedy for many of the traditional drawbacks to prescribing cisplatin.

We demonstrated a surface PEGylation density-dependent loading of drug for PRINT 

hydrogel nanoparticles. For studies in a biological setting, this loading was compared to the 

circulation pharmacokinetic parameters to find the optimal formulation. The ability to safely 

deliver a larger amount of drug is promising for antitumor studies. PRINT-Platin has the 

potential to mitigate the dose-limiting toxicity associated with cisplatin, leading to more 

efficacious treatment and a higher therapeutic index. Future investigation into the in vivo 

anti-cancer effects of PRINT-Platin would reveal the potential for therapeutic applications.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Nanoparticle-cisplatin complexation schematic. The particle (red) was PEGylated and 

contained excess amines (A). The amines were converted to carboxyl groups by 

succinylation (B), which complex with cisplatin via ligand exchange with a chlorine atom 

(C).
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Figure 2. 
SEM micrograph and dynamic light scattering data for (A) bare (not functionalized) 80 nm 

× 320 nm PRINT hydrogels and (B) cisplatin-loaded, PEG mushroom 80 nm × 320 nm 

PRINT hydrogels.
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Figure 3. 
Loading (A) and release profile (B) of cisplatin from 80 nm × 320 nm PRINT hydrogels as a 

function of surface PEG conformation in PBS at 37 °C.
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Figure 4. 
Cytotoxicity of cisplatin, cisplatin-loaded 80 nm × 320 nm PEG mushroom hydrogels, and 

blank 80 nm × 320 nm hydrogels (no drug) in cell lines of interest: A549 (non-small cell 

lung), SKOV-3 (ovarian), and MDA-MB-468 (HER2-enriched breast).
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Figure 5. 
Cisplatin and PRINT-Platin circulation behavior in plasma measured by inductively-coupled 

plasma mass spectroscopy. The plasma profile (A) and pharmacokinetic parameters (B) of 

cisplatin were significantly improved in particle form compared to soluble drug (* = p < 

0.05; one-way ANOVA). Particle-bound versus released cisplatin in plasma over time (C) 

shows less than 10% of drug is released from particle while in circulation. Accumulation of 

platinum in kidney (D) shows higher levels of drug for cisplatin compared to PRINT-Platin, 

suggesting renal protection.
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Figure 6. 
Change in body weight of nude mice dosed with cisplatin, saline, PRINT-Platin (dose based 

on cisplatin loading), and blank PRINT nanoparticles (same particle concentration as 15 

mg/kg PRINT-Platin).
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Figure 7. 
Relative exposure of cisplatin versus PRINT-Platin in two tumor models measured by 

inductively-coupled plasma mass spectroscopy. (sub-q = subcutaneous)
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