4 research outputs found

    Preparation, Characterization, and Swelling Behavior of PEGylated Guar Gum @ Ag Nanoparticles

    Get PDF
    In this study, polyethylene glycol/guar gum @ silver nanoparticles (PEG/GG@AgNPs) were synthesized by using simple sonication method. The nanoparticles were characterized using Fourier-transform infrared spectroscopy (FTIR) and scanning transmission electron microscopy (STEM). The swelling behaviors of nanoparticles were studied in different pHs (5.5 and 7.4). The experimental results were calculated by Fickian diffusion and Schott kinetic models to understand the swelling mechanism and coefficients of the nanoparticles. The results showed that the linear equation of the Fickian diffusion kinetic model was best fit to explain the water diffusion mechanism of the nanoparticle with high correlation coefficient (R2 = 0.982–0.987). The results confirmed that the swelling degree of nanoparticles were 9.71 g/g at pH 5.5. Also, the results confirmed that PEG/GG@AgNPs can be a good candidate for drug delivery systems in pharmaceutical applications

    A sensitive and smartphone colorimetric assay for the detection of hydrogen peroxide based on antibacterial and antifungal matcha extract silver nanoparticles enriched with polyphenol

    No full text
    Current trends in scientific studies focus on the development of smartphone-based biosensors via green nanoparticle for clinical diagnosis, food, and environmental monitoring. In this study, we developed a novel portable smartphone-based biosensor via green dendrimer-coated matcha extract/silver nanoparticles (ME-Ag NPs) enriched with polyphenol for detecting hydrogen peroxide (H2O2). Also, we investigated the biological evaluation of the nanostructure as a safe preservative for use in biomedical applications. Ag NPs were prepared using a green sonochemical method and were characterized to determine surface and chemical properties by different techniques such as scanning electron microscopy-energy-dispersive X-ray, transmission electron microscope, Fourier transform infrared spectroscopy, atomic force microscopy, X-ray diffraction, and Brunauer-Emmett-Teller. Furthermore, antimicrobial and antifungal properties of ME-Ag NPs were investigated against pathogenic microorganisms such as Staphylococcus aureus, Pseudomonas aureginosa, Escherichia coli, Candida albicans, and Aspergillus brasiliensis. The experimental sensor methodology was based on the detection of H2O2 by analysis of images of novel silver nanostructure-coated papers and processing of color histograms with a RGB (red-green-blue) analyzer software. Consequently, the smartphone-based biosensor exhibited high sensitivity with detection limits of 0.82 mu M response time of 5 s. The smartphone-based biosensor via ME-Ag NPs provided a rapid and selective detection of H2O2

    Characterization, optimization, and evaluation of preservative efficacy of carboxymethyl cellulose/hydromagnesite stromatolite bio-nanocomposite

    No full text
    Currently, researchers are focusing on the development of nano-additive preservatives during the worldwide COVID-19 pandemic. This research aimed to constitute a small sized preservative nano-formulation which emerges from the biopolymer carboxymethyl cellulose (a green stabilizing agent) and hydromagnesite stromatolite (a fossilized natural additive). In this study, we investigated the optimization of the experimental design of carboxymethyl cellulose/hydromagnesite stromatolite (CMC/HS) bio-nanocomposites using a green and one-step sonochemical method at room temperature. In addition, we constructed a mathematical model which relates the intrinsic viscosity with all operating variables, and we carried out statistical error analysis to assess the validity of the proposed model. The characterization and chemical functional groups of CMC/HS bio-nanocomposites were determined by different advanced techniques such as SEM, HRTEM, DLS, FTIR, XRD, and BET. The challenge test was used to show the preservative efficacy of CMC/HS bio-nanocomposites against Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Candida albicans, and Aspergillus brasiliensis. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltrazolium bromide (MTT) assay was performed on L929 cells to evaluate the in vitro cytotoxicity of CMC/HS bio-nanocomposites. According to the results, we showed that the synthesized CMC/HS bio-nanocomposites have no cytototoxic effects on L929 fibroblast cells and could be considered to be an alternative green nano-additive preservative against pathogenic microorganisms
    corecore