433 research outputs found

    Effect-directed analysis for estrogenic compounds in a fluvial sediment sample using transgenic cyp19a1b-GFP zebrafish embryos.

    Get PDF
    International audienceXenoestrogens may persist in the environment by binding to sediments or suspended particulate matter serving as long-term reservoir and source of exposure, particularly for organisms living in or in contact with sediments. In this study, we present for the first time an effect-directed analysis (EDA) for identifying estrogenic compounds in a sediment sample using embryos of a transgenic reporter fish strain. In the tg(cyp19a1b-GFP) transgenic zebrafish strain, the expression of GFP (green fluorescent protein) in the brain is driven by an oestrogen responsive element in the promoter of the cyp19a1b (aromatase) gene. The selected sediment sample of the Czech river Bilina had already been analysed in a previous EDA using the yeast oestrogen screening assay and had revealed fractions containing estrogenic compounds. When normal phase HPLC (high performance liquid chromatography) fractionation was used for the separation of the sediment sample, the biotest with transgenic fish embryos revealed two estrogenic fractions. Chemical analysis of candidate compounds in these sediment fractions suggested alkylphenols and estrone as candidate compounds responsible for the observed estrogenic effect. Alkylphenol concentrations could partially explain the estrogenicity of the fractions. However, xenoestrogens below the analytical detection limit or non-targeted estrogenic compounds have probably also contributed to the sample's estrogenic potency. The results indicated the suitability of the tg(cyp19a1b-GFP) fish embryo for an integrated chemical-biological analysis of estrogenic effects

    Brain aromatase (Cyp19a1b) is a highly sensitive gene to estrogens and xeno-estrogens

    Get PDF
    International audienceAromatase is the only enzyme responsible for the irreversible conversion of androgens into estrogens. Teleost fishes have two copies of the cyp19a1 gene that encode two isoforms of aromatase: cyp19a1a encodes ovarian aromatase, while the cyp19a1b gene encodes brain aromatase (aromatase B). We have shown that (i) aromatase B is strongly expressed in radial glial cells (RGC), that act as stem cells in mammals and fish and ii) the cyp19a1b gene is very sensitive to estrogens, through a mechanism that involves a well conserved ERE. This feature makes this gene an outstanding biomarker of xeno-estrogen exposures and we have developed and validated an in vivo assay allowing detection of estrogenic activity with a very high sensitivity. The in vivo assay is based on a transgenic zebrafish tg(cyp19a1b-GFP) line that expresses GFP in RGCs and we demonstrate the usefulness of the transgenic cyp19a1b-GFP as a reliable, sensitive and rapid in vivo estrogenic screening assay

    Synthesis of estrogens in progenitor cells of adult fish brain: Evolutive novelty or exaggeration of a more general mechanism implicating estrogens in neurogenesis?

    No full text
    International audienceIn contrast to other vertebrates, in which the adult brain shows limited adult neurogenesis, teleost fishes exhibit an unparalleled capacity to generate new neurons as adults, suggesting that their brains present a highly permissive environment for the maintenance and proliferation of adult progenitors. Here, we examine the hypothesis that one of the factors permitting establishment of this favourable environment is estradiol. Indeed, recent data showed that radial glial cells strongly expressed one of two aromatase duplicated genes. Aromatase is the estrogen-synthesizing enzyme and this observation is of great interest, given that radial glial cells are progenitor cells capable of generating new neurons. Given the well-documented roles of estrogens on cell fate, and notably on cell proliferation, these data suggest that estradiol could be involved in maintaining and/or activating these progenitors. Examination of recent data in birds and mammals suggests that the situation in fish could well be an exaggeration of a more general mechanism implicating estrogens in neurogenesis. Indeed, there is accumulating evidence that estrogens are involved in embryonic, adult or reparative neurogenesis in other vertebrates, notably in mammals

    Expression of Zebra Fish Aromatase cyp19a and cyp19b Genes in Response to the Ligands of Estrogen Receptor and Aryl Hydrocarbon Receptor

    Get PDF
    Many endocrine-disrupting chemicals act via estrogen receptor (ER) or aryl hydrocarbon receptor (AhR). To investigate the interference between ER and AhR, we studied the effects of 17β-estradiol (E2) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on the expression of zebra fish cyp19a (zfcyp19a) and cyp19b (zfcyp19b) genes, encoding aromatase P450, an important steroidogenic enzyme. In vivo (mRNA quantification in exposed zebra fish larvae) and in vitro (activity of zfcyp19-luciferase reporter genes in cell cultures in response to chemicals and zebra fish transcription factors) assays were used. None of the treatments affected zfcyp19a, excluding the slight upregulation by E2 observed in vitro. Strong upregulation of zfcyp19b by E2 in both assays was downregulated by TCDD. This effect could be rescued by the addition of an AhR antagonist. Antiestrogenic effect of TCDD on the zfcyp19b expression in the brain was also observed on the protein level, assessed by immunohistochemistry. TCDD alone did not affect zfcyp19b expression in vivo or promoter activity in the presence of zebra fish AhR2 and AhR nuclear translocator 2b (ARNT2b) in vitro. However, in the presence of zebra fish ERα, AhR2, and ARNT2b, TCDD led to a slight upregulation of promoter activity, which was eliminated by either an ER or AhR antagonist. Studies with mutated reporter gene constructs indicated that both mechanisms of TCDD action in vitro were independent of dioxin-responsive elements (DREs) predicted in the promoter. This study shows the usefulness of in vivo zebra fish larvae and in vitro zfcyp19b reporter gene assays for evaluation of estrogenic chemical actions, provides data on the functionality of DREs predicted in zfcyp19 promoters and shows the effects of cross talk between ER and AhR on zfcyp19b expression. The antiestrogenic effect of TCDD demonstrated raises further concerns about the neuroendocrine effects of AhR ligand

    Ghrelin induces clock gene expression in the liver of goldfish in vitro via protein kinase C and protein kinase A pathways

    Get PDF
    International audienceThe liver is the most important link between the circadian system and metabolism. As a food-entrainable oscillator, the hepatic clock needs to be entrained by food-related signals. The objective of the present study was to investigate the possible role of ghrelin (an orexigenic peptide mainly synthesized in the gastrointestinal tract) as an endogenous synchronizer of the liver oscillator in teleosts. To achieve this aim, we first examined the presence of ghrelin receptors in the liver of goldfish. Then, the ghrelin regulation of clock gene expression in the goldfish liver was studied. Finally, the possible involvement of the phospholipase C/ protein kinase C (PLC/ PKC) and adenylate cyclase/protein kinase A (AC/PKA) intracellular signalling pathways was investigated. Ghrelin receptor transcripts, ghs-r1a, are present in the majority of goldfish hepatic cells. Ghrelin induced the mRNA expression of the positive (gbmal1a, gclock1a) and negative (gper genes) elements of the main loop of the molecular clock machinery, as well as grev-erba (auxiliary loop) in cultured liver. These effects were blocked, at least in part, by a ghrelin antagonist. Incubation of liver with a PLC inhibitor (U73122), a PKC activator (phorbol 12-myristate 13-acetate) and a PKC inhibitor (chelerythrine chloride) demonstrated that the PLC/ PKC pathway mediates such ghrelin actions. Experiments with an AC activator (forskolin) and a PKA inhibitor (H89) showed that grev-erba regulation could be due to activation of PKA. Taken together, the present results show for the first time in vertebrates a direct action of ghrelin on hepatic clock genes and support a role for this hormone as a temporal messenger in the entrainment of liver circadian functions

    Neurones à kisspeptine et oestrogènes. Etude chez le poisson zèbre et le loup de mer. Kisspeptin neurones and their relationships with estrogens. Study in two fish species the zebrafish and the sea bass.

    Get PDF
    Supported by EU Project LIFECYCLE (FP7-222719-1) to OK and SZ, NEMO project to OK and ACOM/2010/086-GV. SE was supported by a JAE-Predoc (CSIC, Spain).Peer Reviewe

    Androgen-dependent stimulation of brain dopaminergic systems in the female European eel (Anguilla anguilla).

    No full text
    Dopamine (DA), a neurotransmitter present in all vertebrates, is involved in processes such as motor function, learning and behavior, sensory activities, and neuroendocrine control of pituitary hormone release. In the female eel, we analyzed how gonadal steroids regulate brain expression of tyrosine hydroxylase (TH), the rate-limiting enzyme in the biosynthesis of DA. TH mRNA levels were assayed by quantitative real-time RT-PCR. TH-positive nuclei were also localized by in situ hybridization (ISH) and immunohistochemistry, and the location of TH nuclei that project to the pituitary was determined using 1,1'-dioctadecyl-3,3,3',3'-tetramethylindicarbocyanine perchlorate retrograde tracing. Chronic in vivo treatment with testosterone increased TH mRNA specifically in the periglomerular area of the olfactory bulbs and in the nucleus preopticus anteroventralis (NPOav). NPOav was labeled with 1,1'-dioctadecyl-3,3,3',3'-tetramethylindicarbocyanine perchlorate, showing that this nucleus is hypophysiotropic in the eel. The nonaromatizable 5alpha-dihydrotestosterone gave identical results in both areas, whereas 17beta-estradiol had no stimulatory effect, showing that the observed stimulatory effects of testosterone were androgen dependent. In teleosts, DA neurons originating from the NPOav directly inhibit gonadotropic function, and our results indicate an androgen-dependent, positive feedback on this neuroendocrine control in the eel. In mammals, DA interneurons in the olfactory bulbs are involved in the enhancement of olfactory sensitivity and discrimination. Our results in the European eel suggest an androgen-dependent stimulation of olfactory processing, a sensory function believed to be important in eel navigation during its reproductive migration toward the oceanic spawning grounds. To our knowledge, this is the first evidence from any vertebrate of an androgen-dependent effect on DAergic activity in the olfactory bulbs, providing a new basis for understanding the regulation by gonadal steroids of central DAergic systems in vertebrates

    Ghrelin induces clock gene expression in the liver of goldfish in vitro via protein kinase C and protein kinase A pathways

    Get PDF
    The liver is the most important link between the circadian system and metabolism. As a food-entrainable oscillator, the hepatic clock needs to be entrained by food-related signals. The objective of the present study was to investigate the possible role of ghrelin (an orexigenic peptide mainly synthesized in the gastrointestinal tract) as an endogenous synchronizer of the liver oscillator in teleosts. To achieve this aim, we first examined the presence of ghrelin receptors in the liver of goldfish. Then, the ghrelin regulation of clock gene expression in the goldfish liver was studied. Finally, the possible involvement of the phospholipase C/protein kinase C (PLC/PKC) and adenylate cyclase/protein kinase A (AC/PKA) intracellular signalling pathways was investigated. Ghrelin receptor transcripts, ghs-r1a, are present in the majority of goldfish hepatic cells. Ghrelin induced the mRNA expression of the positive (gbmal1a, gclock1a) and negative (gper genes) elements of the main loop of the molecular clock machinery, as well as grev-erbα (auxiliary loop) in cultured liver. These effects were blocked, at least in part, by a ghrelin antagonist. Incubation of liver with a PLC inhibitor (U73122), a PKC activator (phorbol 12-myristate 13-acetate) and a PKC inhibitor (chelerythrine chloride) demonstrated that the PLC/PKC pathway mediates such ghrelin actions. Experiments with an AC activator (forskolin) and a PKA inhibitor (H89) showed that grev-erbα regulation could be due to activation of PKA. Taken together, the present results show for the first time in vertebrates a direct action of ghrelin on hepatic clock genes and support a role for this hormone as a temporal messenger in the entrainment of liver circadian functions

    Assessment of Xenoestrogens Using Three Distinct Estrogen Receptors and the Zebrafish Brain Aromatase Gene in a Highly Responsive Glial Cell System

    Get PDF
    The brain cytochrome P450 aromatase (Aro-B) in zebrafish is expressed in radial glial cells and is strongly stimulated by estrogens (E(2)); thus, it can be used in vivo as a biomarker of xenoestrogen effects on the central nervous system. By quantitative real-time polymerase chain reaction, we first confirmed that the expression of Aro-B gene is robustly stimulated in juvenile zebrafish exposed to several xenoestrogens. To investigate the impact of environmental estrogenic chemicals on distinct estrogen receptor (ER) activity, we developed a glial cell-based assay using Aro-B as the target gene. To this end, the ER-negative glial cell line U251-MG was transfected with the three zebrafish ER subtypes and the Aro-B promoter linked to a luciferase reporter gene. E(2) treatment of U251-MG glial cells cotransfected with zebrafish ER-α and the Aro-B promoter–luciferase reporter resulted in a 60- to 80-fold stimulation of luciferase activity. The detection limit was < 0.05 nM, and the EC(50) (median effective concentration) was 1.4 nM. Interestingly, in this glial cell context, maximal induction achieved with the Aro-B reporter was three times greater than that observed with a classical estrogen-response-element reporter gene (ERE-tk-Luc). Dose–response analyses with ethynylestradiol (EE(2)), estrone (E(1)), α-zeralenol, and genistein showed that estrogenic potency of these agents markedly differed depending on the ER subtype in the assay. Moreover, the combination of these agents showed an additive effect according to the concept of concentration addition. This confirmed that the combined additive effect of the xenoestrogens leads to an enhancement of the estrogenic potency, even when each single agent might be present at low effect concentrations. In conclusion, we demonstrate that our bioassay provides a fast, reliable, sensitive, and efficient test for evaluating estrogenic potency of endocrine disruptors on ER subtypes in a glial context

    Aromatase in the brain of teleost fish: expression, regulation and putative functions.

    Get PDF
    International audienceUnlike that of mammals, the brain of teleost fish exhibits an intense aromatase activity due to the strong expression of one of two aromatase genes (aromatase A or cyp19a1a and aromatase B or cyp19a1b) that arose from a gene duplication event. In situ hybridization, immunohistochemistry and expression of GFP (green fluorescent protein) in transgenic tg(cyp19a1b-GFP) fish demonstrate that aromatase B is only expressed in radial glial cells (RGC) of adult fish. These cells persist throughout life and act as progenitors in the brain of both developing and adult fish. Although aromatase B-positive radial glial cells are most abundant in the preoptic area and the hypothalamus, they are observed throughout the entire central nervous system and spinal cord. In agreement with the fact that brain aromatase activity is correlated to sex steroid levels, the high expression of cyp19a1b is due to an auto-regulatory loop through which estrogens and aromatizable androgens up-regulate aromatase expression. This mechanism involves estrogen receptor binding on an estrogen response element located on the cyp19a1b promoter. Cell specificity is achieved by a mandatory cooperation between estrogen receptors and unidentified glial factors. Given the emerging roles of estrogens in neurogenesis, the unique feature of the adult fish brain suggests that, in addition to classical functions on brain sexual differentiation and sexual behaviour, aromatase expression in radial glial cells could be part of the mechanisms authorizing the maintenance of a high proliferative activity in the brain of fish
    corecore