1,946 research outputs found
Far-infrared spectroscopy of spin excitations and Dzyaloshinskii-Moriya interactions in a Shastry-Sutherland compound SrCu(BO)$_2
We have studied spin excitation spectra in the Shastry-Sutherland model
compound SrCu(BO) in magnetic fields using far-infrared Fourier
spectroscopy. The transitions from the ground singlet state to the triplet
state at 24 cm and to several bound triplet states are induced by the
electric field component of the far-infrared light. To explain the light
absorption in the spin system we invoke a dynamic Dzyaloshinskii-Moriya (DM)
mechanism where light couples to a phonon mode, allowing the DM interaction.
Two optical phonons couple light to the singlet to triplet transition in
SrCu(BO). One is -polarized and creates an intra-dimer dynamic
DM along the c axis. The other is -polarized and creates an intra-dimer
dynamic DM interaction, it is in the plane and perpendicular to the
dimer axis. Singlet levels at 21.5 and 28.6 cm anti-cross with the first
triplet as is seen in far-infrared spectra. We used a cluster of two dimers
with a periodic boundary condition to perform a model calculation with scaled
intra- and inter-dimer exchange interactions. Two static DM interactions are
sufficient to describe the observed triplet state spectra. The static
inter-dimer DM in the c-direction cm splits the triplet state
sub-levels in zero field [C\'{e}pas et al., Phys. Rev. Lett. \textbf{87},
167205 (2001)]. The static intra-dimer DM in the plane (perpendicular to
the dimer axis) cm, allowed by the buckling of CuBO
planes, couples the triplet state to the 28.6 cm singlet as is seen from
the avoided crossing.Comment: 12 pages with 7 figures, some references correcte
Geodynamo and mantle convection simulations on the Earth Simulator using the Yin-Yang grid
We have developed finite difference codes based on the Yin-Yang grid for the
geodynamo simulation and the mantle convection simulation. The Yin-Yang grid is
a kind of spherical overset grid that is composed of two identical component
grids. The intrinsic simplicity of the mesh configuration of the Yin-Yang grid
enables us to develop highly optimized simulation codes on massively parallel
supercomputers. The Yin-Yang geodynamo code has achieved 15.2 Tflops with 4096
processors on the Earth Simulator. This represents 46% of the theoretical peak
performance. The Yin-Yang mantle code has enabled us to carry out mantle
convection simulations in realistic regimes with a Rayleigh number of
including strongly temperature-dependent viscosity with spatial contrast up to
.Comment: Plenary talk at SciDAC 200
X-Band ESR Determination of Dzyaloshinsky-Moriya Interaction in 2D SrCu(BO) System
X-band ESR measurements on a single crystal of SrCu(BO) system in
a temperature range between 10 K and 580 K are presented. The temperature and
angular dependence of unusually broad ESR spectra can be explained by the
inclusion of antisymmetric Dzyaloshinsky-Moriya (DM) interaction, which yields
by far the largest contribution to the linewidth. However, the well-accepted
picture of only out-of-plane interdimer DM vectors is not sufficient for
explanation of the observed angular dependence. In order to account for the
experimental linewidth anisotropy we had to include sizable in-plane components
of interdimer as well as intradimer DM interaction in addition to the
out-of-plane interdimer one. The nearest-neighbor DM vectors lie perpendicular
to crystal anisotropy c-axis due to crystal symmetry. We also emphasize that
above the structural phase transition occurring at 395 K dynamical mechanism
should be present allowing for instantaneous DM interactions. Moreover, the
linewidth at an arbitrary temperature can be divided into two contributions;
namely, the first part arising from spin dynamics governed by the spin
Hamiltonian of the system and the second part due to significant spin-phonon
coupling. The nature of the latter mechanism is attributed to phonon-modulation
of the antisymmetric interaction, which is responsible for the observed linear
increase of the linewidth at high temperatures.Comment: 17 pages, 4 figures, submitted to PR
Coupled spin models for magnetic variation of planets and stars
Geomagnetism is characterized by intermittent polarity reversals and rapid
fluctuations. We have recently proposed a coupled macro-spin model to describe
these dynamics based on the idea that the whole dynamo mechanism is described
by the coherent interactions of many small dynamo elements. In this paper, we
further develop this idea and construct a minimal model for magnetic
variations. This simple model naturally yields many of the observed features of
geomagnetism: its time evolution, the power spectrum, the frequency
distribution of stable polarity periods, etc. This model has coexistent two
phases; i.e. the cluster phase which determines the global dipole magnetic
moment and the expanded phase which gives random perpetual perturbations that
yield intermittent polarity flip of the dipole moment. This model can also
describe the synchronization of the spin oscillation. This corresponds to the
case of sun and the model well describes the quasi-regular cycles of the solar
magnetism. Furthermore, by analyzing the relevant terms of MHD equation based
on our model, we have obtained a scaling relation for the magnetism for
planets, satellites, sun, and stars. Comparing it with various observations, we
can estimate the scale of the macro-spins.Comment: 16 pages, 9 figure
Energy Dissipation Burst on the Traffic Congestion
We introduce an energy dissipation model for traffic flow based on the
optimal velocity model (OV model). In this model, vehicles are defined as
moving under the rule of the OV model, and energy dissipation rate is defined
as the product of the velocity of a vehicle and resistant force which works to
it.Comment: 15 pages, 19 Postscript figures. Reason for replacing: This is the
submitted for
Specific heat and magnetization study on single crystals of a frustrated, quasi one-dimensional oxide: Ca3Co2O6
Specific heat and magnetization measurements have been carried out under a
range of magnetic fields on single crystals of Ca3Co2O6. This compound is
composed of Ising magnetic chains that are arranged on a triangular lattice.
The intrachain and interchain couplings are ferromagnetic and
antiferromagnetic, respectively. This situation gives rise to geometrical
frustration, that bears some similarity to the classical problem of a
two-dimensional Ising triangular antiferromagnet. This paper reports on the
ordering process at low-T and the possibility of one-dimensional features at
high-T.Comment: 7 pages, 6 figures, accepted for publication in PR
Magnetization plateaus of SrCu_2(BO_3)_2 from a Chern-Simons theory
The antiferromagnetic Heisenberg model on the frustrated Shastry-Sutherland
lattice is studied by a mapping onto spinless fermions carrying one quantum of
statistical flux. Using a mean-field approximation these fermions populate the
bands of a generalized Hofstadter problem. Their filling leads to the
magnetization curve. For SrCu_2(BO_3)_2 we reproduce plateaus at 1/3 and 1/4 of
the saturation moment and predict a new one at 1/2. Gaussian fluctuations are
shown to be massive at these plateau values.Comment: 4 pages, 5 figure
Glacial climate sensitivity to different states of the Atlantic Meridional Overturning Circulation: results from the IPSL model
Paleorecords from distant locations on the globe show rapid and large amplitude climate variations during the last glacial period. Here we study the global climatic response to different states of the Atlantic Meridional Overturning Circulation (AMOC) as a potential explanation for these climate variations and their possible connections. We analyse three glacial simulations obtained with an atmosphere-ocean coupled general circulation model and characterised by different AMOC strengths (18, 15 and 2 Sv) resulting from successive ~0.1 Sv freshwater perturbations in the North Atlantic. These AMOC states suggest the existence of a freshwater threshold for which the AMOC collapses. A weak (18 to 15 Sv) AMOC decrease results in a North Atlantic and European cooling. This cooling is not homogeneous, with even a slight warming over the Norwegian Sea. Convection in this area is active in both experiments, but surprisingly stronger in the 15 Sv simulation, which appears to be related to interactions with the atmospheric circulation and sea-ice cover. Far from the North Atlantic, the climatic response is not significant. The climate differences for an AMOC collapse (15 to 2 Sv) are much larger and of global extent. The timing of the climate response to this AMOC collapse suggests teleconnection mechanisms. Our analyses focus on the North Atlantic and surrounding regions, the tropical Atlantic and the Indian monsoon region. The North Atlantic cooling associated with the AMOC collapse induces a cyclonic atmospheric circulation anomaly centred over this region, which modulates the eastward advection of cold air over the Eurasian continent. This can explain why the cooling is not as strong over western Europe as over the North Atlantic. In the Tropics, the southward shift of the Inter-Tropical Convergence Zone appears to be strongest over the Atlantic and Eastern Pacific and results from an adjustment of the atmospheric and oceanic heat transports. Finally, the Indian monsoon weakening appears to be connected to the North Atlantic cooling via that of the troposphere over Eurasia. Such an understanding of these teleconnections and their timing could be useful for paleodata interpretation
Robust circadian clocks from coupled protein modification and transcription-translation cycles
The cyanobacterium Synechococcus elongatus uses both a protein
phosphorylation cycle and a transcription-translation cycle to generate
circadian rhythms that are highly robust against biochemical noise. We use
stochastic simulations to analyze how these cycles interact to generate stable
rhythms in growing, dividing cells. We find that a protein phosphorylation
cycle by itself is robust when protein turnover is low. For high decay or
dilution rates (and co mpensating synthesis rate), however, the
phosphorylation-based oscillator loses its integrity. Circadian rhythms thus
cannot be generated with a phosphorylation cycle alone when the growth rate,
and consequently the rate of protein dilution, is high enough; in practice, a
purely post-translational clock ceases to function well when the cell doubling
time drops below the 24 hour clock period. At higher growth rates, a
transcription-translation cycle becomes essential for generating robust
circadian rhythms. Interestingly, while a transcription-translation cycle is
necessary to sustain a phosphorylation cycle at high growth rates, a
phosphorylation cycle can dramatically enhance the robustness of a
transcription-translation cycle at lower protein decay or dilution rates. Our
analysis thus predicts that both cycles are required to generate robust
circadian rhythms over the full range of growth conditions.Comment: main text: 7 pages including 5 figures, supplementary information: 13
pages including 9 figure
- âŠ