183 research outputs found

    Targeted neutralization of calmodulin in the nucleus blocks DNA synthesis and cell cycle progression

    Get PDF
    AbstractCalmodulin (CaM) is a major intracellular calcium binding protein which has been implicated in the regulation of cell proliferation. Previous studies using chemically synthesized CaM antagonists and anti-sense RNA indicated that CaM is important for initiation of DNA synthesis and cell cycle progression. However, these methods reduce total intracellular CaM and globally interfering with all the CaM-dependent processes. In order to explore the function of nuclear CaM during the cell cycle, a CaM inhibitor peptide was targeted to the nucleus of intact mammalian cells. Cell progression through S-phase was assessed by incorporation of the thymidine analogue, BrdU. Cells were transfected for 48 h with either the CaM inhibitor peptide gene or the control plasmid prior to analysis. Approx. 70% of the control cells incorporated BrdU. In striking contrast, double immunofluorescent labeling demonstrated that none of the cells expressing the CaM inhibitor peptide entered S-phase. This result indicates that neutralization of nuclear CaM by targeted expression of a CaM inhibitor peptide blocks DNA synthesis and cell cycle progression

    Evaluation of Exposure to Arsenic in Residential Soil

    Get PDF
    In response to concerns regarding arsenic in soil from a pesticide manufacturing plant, we conducted a biomonitoring study on children younger than 7 years of age, the age category of children most exposed to soil. Urine samples from 77 children (47% participation rate) were analyzed for total arsenic and arsenic species related to ingestion of inorganic arsenic. Older individuals also provided urine (n = 362) and toenail (n = 67) samples. Speciated urinary arsenic levels were similar between children (geometric mean, geometric SD, and range: 4.0, 2.2, and 0.89–17.7 μg/L, respectively) and older participants (3.8, 1.9, 0.91–19.9 μg/L) and consistent with unexposed populations. Toenail samples were < 1 mg/kg. Correlations between speciated urinary arsenic and arsenic in soil (r = 0.137, p = 0.39; n = 41) or house dust (r = 0.049, p = 0.73; n = 52) were not significant for children. Similarly, questionnaire responses indicating soil exposure were not associated with increased urinary arsenic levels. Relatively low soil arsenic exposure likely precluded quantification of arsenic exposure above background

    La proteína quinasa dependiente de Ca2+ y calmodulina (CaMKII): ¿es proarritmogénica en reperfusión?

    Get PDF
    La reperfusión del miocardio isquémico lo hace más propenso a la aparición de arritmias. Experimentos previos de nuestro laboratorio mostraron que al inicio de la reperfusión (R), momento en el que se detecta el mayor número de arritmias, aumenta la fosforilación dependiente de CaMKII del residuo PT17 de fosfolamban (PLN) (Vittone, 2002). El objetivo de este trabajo, fue evaluar la posibilidad de que la activación de CaMKII al inicio de la reperfusión sea un mecanismo proarritmogénico.Facultad de Ciencias Médica

    Annexin-A5 assembled into two-dimensional arrays promotes cell membrane repair

    Get PDF
    Eukaryotic cells possess a universal repair machinery that ensures rapid resealing of plasma membrane disruptions. Before resealing, the torn membrane is submitted to considerable tension, which functions to expand the disruption. Here we show that annexin-A5 (AnxA5), a protein that self-assembles into two-dimensional (2D) arrays on membranes upon Ca2+ activation, promotes membrane repair. Compared with wild-type mouse perivascular cells, AnxA5-null cells exhibit a severe membrane repair defect. Membrane repair in AnxA5-null cells is rescued by addition of AnxA5, which binds exclusively to disrupted membrane areas. In contrast, an AnxA5 mutant that lacks the ability of forming 2D arrays is unable to promote membrane repair. We propose that AnxA5 participates in a previously unrecognized step of the membrane repair process: triggered by the local influx of Ca2+, AnxA5 proteins bind to torn membrane edges and form a 2D array, which prevents wound expansion and promotes membrane resealing

    IgA in the horse: cloning of equine polymeric Ig receptor and J chain and characterization of recombinant forms of equine IgA

    Get PDF
    As in other mammals, immunoglobulin A (IgA) in the horse has a key role in immune defense. To better dissect equine IgA function, we isolated complementary DNA (cDNA) clones for equine J chain and polymeric Ig receptor (pIgR). When coexpressed with equine IgA, equine J chain promoted efficient IgA polymerization. A truncated version of equine pIgR, equivalent to secretory component, bound with nanomolar affinity to recombinant equine and human dimeric IgA but not with monomeric IgA from either species. Searches of the equine genome localized equine J chain and pIgR to chromosomes 3 and 5, respectively, with J chain and pIgR coding sequence distributed across 4 and 11 exons, respectively. Comparisons of transcriptional regulatory sequences suggest that horse and human pIgR expression is controlled through common regulatory mechanisms that are less conserved in rodents. These studies pave the way for full dissection of equine IgA function and open up possibilities for immune-based treatment of equine diseases

    Reduced expression of the polymeric immunoglobulin receptor in pancreatic and periampullary adenocarcinoma signifies tumour progression and poor prognosis

    Get PDF
    The polymeric immunoglobulin receptor (pIgR) is a key component of the mucosal immune system that mediates epithelial transcytosis of immunoglobulins. High pIgR expression has been reported to correlate with a less aggressive tumour phenotype and an improved prognosis in several human cancer types. Here, we examined the expression and prognostic significance of pIgR in pancreatic and periampullary adenocarcinoma. The study cohort encompasses a consecutive series of 175 patients surgically treated with pancreaticoduodenectomy for pancreatic and periampullary adenocarcinoma in Malmö and Lund University Hospitals, Sweden, between 2001-2011. Tissue microarrays were constructed from primary tumours (n = 175) and paired lymph node metastases (n = 105). A multiplied score was calculated from the fraction and intensity of pIgR staining. Classification and regression tree analysis was used to select the prognostic cut-off. Unadjusted and adjusted hazard ratios (HR) for death and recurrence within 5 years were calculated. pIgR expression could be evaluated in 172/175 (98.3%) primary tumours and in 96/105 (91.4%) lymph node metastases. pIgR expression was significantly down-regulated in lymph node metastases as compared with primary tumours (p = 0.018). Low pIgR expression was significantly associated with poor differentiation grade (p < 0.001), perineural growth (p = 0.027), lymphatic invasion (p = 0.016), vascular invasion (p = 0.033) and infiltration of the peripancreatic fat (p = 0.039). In the entire cohort, low pIgR expression was significantly associated with an impaired 5-year survival (HR = 2.99, 95% confidence interval (CI) 1.71-5.25) and early recurrence (HR = 2.89, 95% CI 1.67-4.98). This association remained significant for survival after adjustment for conventional clinicopathological factors, tumour origin and adjuvant treatment (HR = 1.98, 95% CI 1.10-3.57). These results demonstrate, for the first time, that high tumour-specific pIgR expression signifies a more favourable tumour phenotype and that low expression independently predicts a shorter survival in patients with pancreatic and periampullary cancer. The mechanistic basis for the putative tumour suppressing properties of pIgR in these cancers merits further study

    Regulation of the polymeric immunoglobulin receptor by the classical and alternative NF-κB pathways in intestinal epithelial cells

    Get PDF
    The polymeric immunoglobulin receptor (pIgR) transports IgA antibodies across intestinal epithelial cells (IECs). Expression of pIgR is upregulated by proinflammatory signaling pathways via activation of nuclear factor-κB (NF-κB). Here, we examined the contributions of the RelA-dependent classical and RelB-dependent alternative pathways of NF-κB to pIgR regulation in the HT-29 human IEC line following stimulation with tumor necrosis factor (TNF), lipopolysaccharide (LPS; Toll-like receptor 4 (TLR4) ligand), and polyinosinic: polycytidylic acid (pIC; TLR3 ligand). Whereas induction of proinflammatory genes such as interleukin-8 (IL-8) required only RelA, pIgR expression was regulated by complex mechanisms that involved both RelA and RelB. Upregulation of pIgR expression by ligation of the lymphotoxin-β receptor suggested a direct role for the alternative NF-κB pathway. Inhibition of mitogen-activated protein kinases reduced the induction of IL-8, but enhanced the induction of pIgR by TNF and TLR signaling. Regulation of pIgR through unique signaling pathways could allow IECs to sustain high levels of IgA transport while limiting the proinflammatory responses

    Influence of ultra-low dose Aprotinin on thoracic surgical operations: a prospective randomized trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The blood saving effect of aprotinin has been well documented in cardiac surgery. In thoracic surgery, very few recent studies, using rather high doses of aprotinin, have shown a similar result. In a randomized prospective trial, we have tested the influence of aprotinin using an ultra-low dose drug regime.</p> <p>Methods</p> <p>Fifty-nine patients, mean age 58 ± 13.25 years (mean ± SD) undergoing general thoracic procedures were randomized into placebo (Group A) and treatment group (Group B). The group B (n = 29) received 500.000 IU of aprotinin after induction to anesthesia and a repeat dose immediately after chest closure. A detailed protocol with several laboratory parameters was recorded. Patients were transfused when perioperative Ht was less than 26%.</p> <p>Results</p> <p>The two groups were similar in terms of age, gender, diagnosis, pathology, co-morbidity and operations performed. The mean drainage of the first and second postoperative day in group B was significantly reduced (412.6 ± 199.2 vs. 764.3 ± 213.9 ml, p < 0.000, and 248.3 ± 178.5 vs. 455.0 ± 274.6, p < 0.001). Similarly, the need for fresh frozen plasma transfusion was lower in group B, p < 0.035. Both the operation time and the hospital stay were also less for group B but without reaching statistical significance (84.6 ± 35.2 vs 101.2 ± 52.45 min. and 5.8 ± 1.6 vs 7.2 ± 3.6 days respectively, p < 0.064). The overall transfusion rate did not differ significantly. No side effects of aprotinin were noted.</p> <p>Conclusion</p> <p>The perioperative ultra-low dose aprotinin administration was associated with a reduction of total blood losses and blood product requirements. We therefore consider the use of aprotinin safe and effective in major thoracic surgery.</p

    Increased intracellular Ca2+ and SR Ca2+ load contribute to arrhythmias after acidosis in rat heart : Role of Ca2+/calmodulin-dependent protein kinase II

    Get PDF
    Returning to normal pH after acidosis, similar to reperfusion after ischemia, is prone to arrhythmias. The type and mechanisms of these arrhythmias have never been explored and were the aim of the present work. Langendorff-perfused rat/mice hearts and rat-isolated myocytes were subjected to respiratory acidosis and then returned to normal pH. Monophasic action potentials and left ventricular developed pressure were recorded. The removal of acidosis provoked ectopic beats that were blunted by 1 mM of the CaMKII inhibitor KN-93, 1 mM thapsigargin, to inhibit sarcoplasmic reticulum (SR) Ca21 uptake, and 30 nM ryanodine or 45 mM dantrolene, to inhibit SR Ca21 release and were not observed in a transgenic mouse model with inhibition of CaMKII targeted to the SR. Acidosis increased the phosphorylation of Thr17 site of phospholamban (PT-PLN) and SR Ca21 load. Both effects were precluded by KN-93. The return to normal pH was associated with an increase in SR Ca21 leak, when compared with that of control or with acidosis at the same SR Ca21 content. Ca21 leak occurred without changes in the phosphorylation of ryanodine receptors type 2 (RyR2) and was blunted by KN-93. Experiments in planar lipid bilayers confirmed the reversible inhibitory effect of acidosis on RyR2. Ectopic activity was triggered by membrane depolarizations (delayed afterdepolarizations), primarily occurring in epicardium and were prevented by KN-93. The results reveal that arrhythmias after acidosis are dependent on CaMKII activation and are associated with an increase in SR Ca21 load, which appears to be mainly due to the increase in PT-PLN.Centro de Investigaciones Cardiovasculare

    Gene expression analyses of immune responses in Atlantic salmon during early stages of infection by salmon louse (Lepeophtheirus salmonis) revealed bi-phasic responses coinciding with the copepod-chalimus transition

    Get PDF
    The salmon louse (Lepeophtheirus salmonis Krøyer), an ectoparasitic copepod with a complex life cycle causes significant losses in salmon aquaculture. Pesticide treatments against the parasite raise environmental concerns and their efficacy is gradually decreasing. Improvement of fish resistance to lice, through biological control methods, needs better understanding of the protective mechanisms. We used a 21 k oligonucleotide microarray and RT-qPCR to examine the time-course of immune gene expression changes in salmon skin, spleen, and head kidney during the first 15 days after challenge, which encompassed the copepod and chalimus stages of lice development. Results Large scale and highly complex transcriptome responses were found already one day after infection (dpi). Many genes showed bi-phasic expression profiles with abrupt changes between 5 and 10 dpi (the copepod-chalimus transitions); the greatest fluctuations (up- and down-regulation) were seen in a large group of secretory splenic proteases with unknown roles. Rapid sensing was witnessed with induction of genes involved in innate immunity including lectins and enzymes of eicosanoid metabolism in skin and acute phase proteins in spleen. Transient (1-5 dpi) increase of T-cell receptor alpha, CD4-1, and possible regulators of lymphocyte differentiation suggested recruitment of T-cells of unidentified lineage to the skin. After 5 dpi the magnitude of transcriptomic responses decreased markedly in skin. Up-regulation of matrix metalloproteinases in all studied organs suggested establishment of a chronic inflammatory status. Up-regulation of putative lymphocyte G0/G1 switch proteins in spleen at 5 dpi, immunoglobulins at 15 dpi; and increase of IgM and IgT transcripts in skin indicated an onset of adaptive humoral immune responses, whereas MHCI appeared to be down-regulated. Conclusions Atlantic salmon develops rapid local and systemic reactions to L. salmonis, which, however, do not result in substantial level of protection. The dramatic changes observed after 5 dpi can be associated with metamorphosis of copepod, immune modulation by the parasite, or transition from innate to adaptive immune responses
    corecore