64 research outputs found

    A novel synthesis of (±)-8-hydroxy-5-isopropylnonan-2-one

    Get PDF
    914-91

    Selective oxidation of primary alcohols with quinolinium chlorochromate

    Get PDF
    272-27

    ?2-Microglobulin Amyloid Fibril-Induced Membrane Disruption Is Enhanced by Endosomal Lipids and Acidic pH

    Get PDF
    Although the molecular mechanisms underlying the pathology of amyloidoses are not well understood, the interaction between amyloid proteins and cell membranes is thought to play a role in several amyloid diseases. Amyloid fibrils of ?2-microglobulin (?2m), associated with dialysis-related amyloidosis (DRA), have been shown to cause disruption of anionic lipid bilayers in vitro. However, the effect of lipid composition and the chemical environment in which ?2m-lipid interactions occur have not been investigated previously. Here we examine membrane damage resulting from the interaction of ?2m monomers and fibrils with lipid bilayers. Using dye release, tryptophan fluorescence quenching and fluorescence confocal microscopy assays we investigate the effect of anionic lipid composition and pH on the susceptibility of liposomes to fibril-induced membrane damage. We show that ?2m fibril-induced membrane disruption is modulated by anionic lipid composition and is enhanced by acidic pH. Most strikingly, the greatest degree of membrane disruption is observed for liposomes containing bis(monoacylglycero)phosphate (BMP) at acidic pH, conditions likely to reflect those encountered in the endocytic pathway. The results suggest that the interaction between ?2m fibrils and membranes of endosomal origin may play a role in the molecular mechanism of ?2m amyloid-associated osteoarticular tissue destruction in DRA

    An in vivo platform for identifying inhibitors of protein aggregation

    Get PDF
    Protein aggregation underlies an array of human diseases, yet only one small molecule therapeutic has been successfully developed to date. Here, we introduce an in vivo system, based on a β-lactamase tripartite fusion construct, capable of identifying aggregation-prone sequences in the periplasm of Escherichia coli and inhibitors that prevent their aberrant self-assembly. We demonstrate the power of the system using a range of proteins, from small unstructured peptides (islet amyloid polypeptide and amyloid β) to larger, folded immunoglobulin domains. Configured in a 48-well format, the split β-lactamase sensor readily differentiates between aggregation-prone and soluble sequences. Performing the assay in the presence of 109 compounds enabled a rank ordering of inhibition and revealed a new inhibitor of IAPP aggregation. This platform can be applied to both amyloidogenic and other aggregation-prone systems, independent of sequence or size, and can identify small molecules or other factors able to ameliorate or inhibit protein aggregation

    Tropomyosin controls sarcomere-like contractions for rigidity sensing and suppressing growth on soft matrices

    Get PDF
    Cells test the rigidity of the extracellular matrix by applying forces to it through integrin adhesions. Recent measurements show that these forces are applied via local micrometre-scale contractions, but how contraction force is regulated by rigidity is unknown. Here we performed high temporal- and spatial-resolution tracking of contractile forces by plating cells on sub-micron elastomeric pillars. We found that actomyosin-based sarcomere-like contractile units (CUs) simultaneously moved opposing pillars in net steps of ~2.5 nm, independent of rigidity. What correlated with rigidity was the number of steps taken to reach a force level that activated recruitment of α-actinin to the CUs. When we removed actomyosin restriction by depleting tropomyosin 2.1, we observed larger steps and higher forces that resulted in aberrant rigidity sensing and growth of non-transformed cells on soft matrices. Thus, we conclude that tropomyosin 2.1 acts as a suppressor of growth on soft matrices by supporting proper rigidity sensing

    Shear Localization in Dynamic Deformation: Microstructural Evolution

    Full text link

    Juvenile hormone analogues active on mosquitoes: Synthesis and biological activity of hydrocarbon j uvenoids with a pinene and substituted cyclohexane ring in the terminal position

    No full text
    21-261-(2-Pinen-10-yl)-3, 7-dimethyl-2(E), 6-octadiene 1, 1-(2'- isopropyl-5'-methylcyclohexyl)-3, 7-dimethyl-2(E),6-oetadiene 2 and their analogues have been prepared. These compounds have been tested on Culex pipiens quinquefasciatus Say for their juvenile hormone (JH) activity
    corecore