22 research outputs found

    Principles of Titrimetric Analyses According to Generalized Approach to Electrolytic Systems (GATES)

    Get PDF
    The generalized equivalent mass (GEM) concept, based on firm algebraic foundations of the generalized approach to electrolytic systems (GATES) is considered, and put against the equivalent “weight” concept, based on a “fragile” stoichiometric reaction notation, still advocated by IUPAC. The GEM is formulated a priori, with no relevance to a stoichiometry. GEM is formulated in unified manner, and referred to systems of any degree of complexity, with special emphasis put on redox systems, where generalized electron balance (GEB) is involved. GEM is formulated on the basis of all attainable (and preselected) physicochemical knowledge on the system in question, and resolved with use of iterative computer programs. It is possible to calculate coordinates of the end points, taken from the vicinity of equivalence point. This way, one can choose (among others) a proper indicator and the most appropriate (from analytical viewpoint) color change of the indicator. Some interpolative and extrapolative methods of equivalence volume Veq determination are recalled and discussed. The GATES realized for GEM purposes provides the basis for optimization of analytical procedures a priori. The GATES procedure realized for GEM purposes enables to foresee and optimize new analytical methods, or modify, improve, and optimize old analytical methods

    Generalized Electron Balance (GEB) as the Law of Nature in Electrolytic Redox Systems

    Get PDF
    This chapter refers to fundamental/general/obligatory regularities of electrolytic systems. The linear combination 2·f(O) − f(H) of elemental balances, f(H) for H and f(O) for O, provides a rigorous criterion distinguishing between redox and non-redox systems is presented as the general relation distinguishing between electrolytic redox and non-redox systems in aqueous media. As the linearly independent equation for a redox system, 2·f(O) − f(H) is considered as the primary form of the generalized electron balance (GEB), perceived as a law of nature, as the hidden connection of physicochemical laws and the breakthrough in thermodynamic theory of electrolytic redox systems. GEB completes the set of 2+K equations necessary for thermodynamic resolution of redox systems according to generalized approach to electrolytic systems (GATES) applying all relevant, physicochemical knowledge available. GATES/GEB, perceived as an example of excellent paradigm, provides the best thermodynamic approach to electrolytic redox systems of any degree of complexity, in aqueous, non-aqueous, and mixed-solvent media. The formulation of GEB does not need prior knowledge of oxidation numbers for all elements in components forming any electrolytic system, within GATES/GEB, the stoichiometry, oxidation number, oxidant, reductant and equivalent mass are as derivative concepts

    A Distinguishing Feature of the Balance 2∙f(O)−f(H) in Electrolytic Systems: The Reference to Titrimetric Methods of Analysis

    Get PDF
    The balance 2∙f(O)−f(H) provides a general criterion distinguishing between electrolytic redox and non-redox systems of any degree of complexity, in aqueous, non-aqueous and mixed-solvent media. When referred to redox systems, it is an equation linearly independent on charge (ChB) and elemental/core balances f(Yg) for elements/cores Yg ≠ H and O, whereas for non-redox systems, 2∙f(O)−f(H) is linearly dependent on these balances. The balance 2∙f(O)−f(H) formulated for redox systems is the primary form (pr-GEB) of the generalized electron balance (GEB) as the fundamental equation needed for resolution of these systems. Formulation of GEB for redox systems needs no prior knowledge of oxidation numbers for all elements of the system. Any prior knowledge of oxidation numbers for all elements in components forming a redox system and in the species of the system thus formed is not necessary within the Approach II to GEB. Oxidants and reductants are not indicated. Stoichiometry and equivalent mass are redundant concepts only. The GEB, together with charge balance and concentration balances for elements ≠ H and O, and the complete set of independent equations for equilibrium constants form an algorithm, resolvable with use of an iterative computer program. All attainable physicochemical knowledge can be included in the algorithm. Some variations involved with tests of possible reaction paths for metastable systems can also be made. The effects of incomplete physicochemical knowledge on the system can be also tested. One of the main purposes of this chapter is to provide the GEB formulation needed for resolution of redox systems and familiarize it to a wider community of chemists

    Solubility Products and Solubility Concepts

    Get PDF
    The chapter refers to a general concept of solubility product Ksp of sparingly soluble hydroxides and different salts and calculation of solubility of some hydroxides, oxides, and different salts in aqueous media. A (criticized) conventional approach, based on stoichiometry of a reaction notation and the solubility product of a precipitate, is compared with the unconventional/correct approach based on charge and concentration balances and a detailed physicochemical knowledge on the system considered, and calculations realized according to generalized approach to electrolytic systems (GATES) principles. An indisputable advantage of the latter approach is proved in simulation of static or dynamic, two-phase nonredox or redox systems

    Application of the clustering technique to multiple nutritional factors related to inflammation and disease progression in patients with inflammatory bowel disease

    Get PDF
    Diet and nutritional status affect intestinal inflammation in patients with inflammatory bowel disease (IBD). The aim of this study was to use a cluster analysis to assess structural similarity between different groups of parameters including short-chain fatty acid (SCFA) levels in stool as well as hematological and inflammatory parameters (such as serum C-reactive protein (CRP) and proinflammatory and anti-inflammatory cytokines). We also assessed similarity between IBD patients in terms of various biochemical features of disease activity and nutritional status. A total of 48 participants were enrolled, including 36 patients with IBD and 12 controls. We identified four main meaningful clusters of parameters. The first cluster included all SCFAs with strong mutual correlations. The second cluster contained red blood cell parameters and albumin levels. The third cluster included proinflammatory parameters such as tumor necrosis factor-α, CRP, platelets, and phosphoric, succinic, and lactic acids. The final cluster revealed an association between zonulin and interleukins IL-10, IL-17, and IL-22. Moreover, we observed an inverse correlation between IL-6 and body mass index. Our findings suggest a link between nutritional status, diet, and inflammatory parameters in patients with IBD, which contribute to a better adjustment of the nutritional treatment

    The importance of nutritional aspects in the assessment of inflammation and intestinal barrier in patients with inflammatory bowel disease

    Get PDF
    Intestinal inflammation in inflammatory bowel disease (IBD) is closely linked to nutrition. This study aimed to evaluate associations between nutritional, inflammatory, and intestinal barrier parameters in patients with IBD. We assessed nutritional status, fecal short-chain fatty acid profile, serum cytokine levels, and mRNA expression of enzymes and tight junction proteins in intestinal biopsies obtained from 35 patients, including 11 patients with inactive IBD, 18 patients with active IBD, and six controls. Patients with active IBD were characterized by hypoalbuminemia, fluctuations in body weight, and restriction of fiber-containing foods. In addition, they had significantly reduced levels of isovaleric acid and tended to have lower levels of butyric, acetic, and propionic acids. Patients with active IBD had higher mRNA expression of peroxisome proliferator-activated receptor γ and inducible nitric oxide synthase, and lower mRNA expression of claudin-2 and zonula occludens-1, compared with patients with inactive IBD. Moreover, patients with a body mass index (BMI) of ≥25 kg/m(2) had higher median tumor necrosis factor-α levels that those with a lower BMI. We comprehensively evaluated inflammatory parameters in relation to IBD activity and nutritional status. The discrepancies between proinflammatory and anti-inflammatory parameters depending on IBD activity may be related to nutritional factors, including diet and abnormal body weight

    Alu-repeat–induced deletions within the NCF2 gene causing p67- phox –deficient chronic granulomatous disease (CGD)

    Full text link
    Mutations that impair expression or function of the components of the phagocyte NADPH oxidase complex cause chronic granulomatous disease (CGD), which is associated with life-threatening infections and dysregulated granulomatous inflammation. In five CGD patients from four consanguineous families of two different ethnic backgrounds, we found similar genomic homozygous deletions of 1,380 bp comprising exon 5 of NCF2 , which could be traced to Alu-mediated recombination events. cDNA sequencing showed in-frame deletions of phase zero exon 5, which encodes one of the tandem repeat motifs in the tetratricopeptide (TPR4) domain of p67- phox . The resulting shortened protein (p67Δ5) had a 10-fold reduced intracellular half-life and was unable to form a functional NADPH oxidase complex. No dominant negative inhibition of oxidase activity by p67Δ5 was observed. We conclude that Alu-induced deletion of the TPR4 domain of p67- phox leads to loss of function and accelerated degradation of the protein, and thus represents a new mechanism causing p67- phox –deficient CGD. Hum Mutat 30:1–8, 2009. © 2009 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/64904/1/21156_ftp.pd

    Proteins of the Inter-α-inhibitor Family : Biosynthesis, Plasma Clearance and Interaction with Extracellular Matrix Components

    No full text
    Bikunin, a chondroitin sulfate-containing protein of 25 kDa, has protease inhibitory activity and occurs in the plasma in free and complexed form. In inter-α-inhibitor (IαI) and pre-a-inhibitor (PαI) it is covalently linked through its chondroitin sulfate (CS) chain to two or one other polypeptide of about 80 kDa – heavy chains 1 and 2 (H1, H2) and heavy chain 3 (H3) – respectively. Bikunin and the heavy chains are synthesized as precursors, which are proteolytically cleaved and assembled into IαI and PαI in the secretory pathway. The C-terminal extension (CTX) of the heavy chains seems to mediate its own cleavage and theassembly of the complexes. The heavy chains of the IαI family become transferred to hyaluronan during ovulation and inflammation. In this thesis, the biosynthesis of PαI, the plasma clearance of bikunin and the binding of IαI to collagen were studied. We found that in H3, a short segment on the N-terminal side of the CTX cleavage site is required for cleavage. Furthermore, the H3 could become linked to free CS chains primed by a xyloside, showing that the bikunin protein core is not needed for coupling. We also identified His649 as a residue essential for coupling, but not for cleavage. Bikunin labelled with a residualizing agent, 125I-tyramine cellobiose, was injected into mice to identify tissues involved in its uptake. Half of the radioactivity was recovered in the kidneys, 10% in the liver, and the rest distributed in other tissues. We determined the half-life of bikunin in rat plasma using two independent methods: injection of 125I-bikunin, or hepatectomy followed by assessing the rate of disappearance of endogenous bikunin. Both methods yielded half-time values of 5-7 minutes. Removal of the CS chain did not affect the clearance rate of bikunin. IαI and its heavy chains were found to bind to collagen with dissociation constants greater than 2 μM and 0.4-0.6 μM, respectively and this binding was independent of divalent metal ions. We suggest that the interaction of IαI with collagen may play a modulatory role in cell migration or in remodelling of the extracellular matrix

    Inter-α-inhibitor, hyaluronan and inflammation.

    No full text
    Inter-α-inhibitor is an abundant plasma protein whose physiological function is only now beginning to be revealed. It consists of three polypeptides: two heavy chains and one light chain called bikunin. Bikunin, which has antiproteolytic activity, carries a chondroitin sulphate chain to which the heavy chains are covalently linked. The heavy chains can be transferred from inter-α-inhibitor to hyaluronan molecules and become covalently linked. This reaction seems to be mediated by TSG-6, a protein secreted by various cells upon stimulation by inflammatory cytokines. Inter-α-inhibitor has been shown to be required for the stabilization of the cumulus cell-oocyte complex during the expansion that occurs prior to ovulation. Hyaluronan-linked heavy chains in the extracellular matrix of this cellular complex have recently been shown to be tightly bound to TSG-6. Since TSG-6 binds to hyaluronan, its complex with heavy chains could stabilize the extracellular matrix by cross-linking hyaluronan molecules. Heavy chains linked to hyaluronan molecules have also been found in inflamed tissues. The physiological role of these complexes is not known but there are indications that they might protect hyaluronan against fragmentation by reactive oxygen species. TSG-6 also binds to bikunin thereby enhancing its antiplasmin activity. Taken together, these results suggest that inter-α-inhibitor is an anti-inflammatory agent which is activated by TSG-6
    corecore