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Abstract

The chapter refers to a general concept of solubility product Ksp of sparingly soluble
hydroxides and different salts and calculation of solubility of some hydroxides, oxides,
and different salts in aqueous media. A (criticized) conventional approach, based on
stoichiometry of a reaction notation and the solubility product of a precipitate, is com-
pared with the unconventional/correct approach based on charge and concentration
balances and a detailed physicochemical knowledge on the system considered, and
calculations realized according to generalized approach to electrolytic systems (GATES)
principles. An indisputable advantage of the latter approach is proved in simulation of
static or dynamic, two-phase nonredox or redox systems.

Keywords: electrolytic two-phase systems, solubility, dissolution, static systems,
dynamic systems, computer simulation, GATES, GEB

1. Introduction

The problem of solubility of various chemical compounds occupies a prominent place in the

scientific literature. This stems from the fact that among various properties determining the

use of these compounds, the solubility is of the paramount importance. Among others, this

issue has been the subject of intense activities initiated in 1979 by the Solubility Data Commis-

sion V.8 of the IUPAC Analytical Chemistry Division established and headed by S. Kertes [1],

who conceived the IUPAC-NIST Solubility Data Series (SDS) project [2, 3]. Within 1979–2009,

the series of 87 volumes, concerning the solubility of gases, liquids, and solids in liquids or
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solids, were issued [3]; one of the volumes concerns the solubility of various oxides and

hydroxides [4]. An extensive compilation of aqueous solubility data provides the Handbook

of Aqueous Solubility Data [5].

A remark. Precipitates are marked in bold letters; soluble species/complexes are marked in

normal letters.

The distinguishing feature of a chemical compound sparingly soluble in a particular medium

is the solubility product Ksp value. In practice, the known Ksp values are referred only to

aqueous media. One should note, however, that the expression for the solubility product and

then the Ksp value of a precipitate depend on the notation of a reaction in which this precipitate

is involved. From this it follows the apparent multiplicity of Ksp’s values referred to a particular

precipitate. Moreover, as will be stated below, the expression for Ksp must not necessarily

contain ionic species. On the other hand, factual or seeming lack of Ksp’s value for some

precipitates is perceived; the latter issue be addressed here to MnO2, taken as an example.

Solubility products refer to a large group of sparingly soluble salts and hydroxides and some

oxides, e.g., Ag2O, considered overall as hydroxides. Incidentally, other oxides, such asMnO2,

ZrO2, do not belong to this group, in principle. For ZrO2, the solubility measurements showed

quite low values even under a strongly acidic condition [6]. The solubility depends on the prior

history of these oxides, e.g., prior roasting virtually eliminates the solubility of some oxides.

Moderately soluble iodine (I2) dissolves due to reduction or oxidation, or disproportionation in

alkaline media [7–12]; for I2, minimal solubility in water is a reference state. For 8-hydroxyquinoline,

the solubility of the neutral molecule HL is a reference state; a growth in solubility is caused here by

the formation of ionic species: H2L
+1 in acidic and L�1 in alkaline media.

The Ksp is the main but not the only parameter used for calculation of solubility s of a

precipitate. The simplifications [13] practiced in this respect are unacceptable and lead to

incorrect/false results, as stated in [14–18]; more equilibrium constants are also involved with

two-phase systems. These objections, formulated in the light of the generalized approach to

electrolytic systems (GATES) [8], where s is the “weighed” sum of concentrations of all soluble

species formed by the precipitate, are presented also in this chapter, related to nonredox and

redox systems.

Calculation of s gives an information of great importance, e.g., from the viewpoint of gravim-

etry, where the primary step of the analysis is the quantitative transformation of a proper

analyte into a sparingly soluble precipitate (salt, hydroxide). Although the precipitation and

further analytical operations are usually carried out at temperatures far greater than the room

temperature, at which the equilibrium constants were determined, the values of s obtained

from the calculations made on the basis of equilibrium data related to room temperature are

helpful in the choice of optimal a priori conditions of the analysis, ensuring the minimal,

summary concentration of all soluble forms of the analyte, remaining in the solution, in

equilibrium with the precipitate obtained after addition of an excess of the precipitating agent;

this excess is referred to as relative to the stoichiometric composition of the precipitate. The

ability to perform appropriate calculations, based on all available physicochemical knowledge,

in accordance with the basic laws of matter conservation, deepens our knowledge of the

relevant systems. At the same time, it produces the ability to acquire relevant knowledge in
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an organized manner—not just imitative, but focused on heuristics. This viewpoint is in

accordance with constructivist teaching, based on the belief that learning occurs, as learners

are actively involved in a process of meaning and knowledge construction, as opposed to

passively receiving information [19].

2. Definitions and formulation of solubility products

The Ksp value refers to a two-phase system where the equilibrium solid phase is a sparingly

soluble precipitate, whose Ksp value is measured/calculated according to defined expression

for the solubility product. This assumption means that the solution with defined species is

saturated against this precipitate, at given temperature and composition of the solution.

However, often a precipitate, when introduced into aqueous media, is not the equilibrium

solid phase, and then this fundamental requirement is not complied, as indicated in examples

of the physicochemical analyses of the systems with struvite MgNH4PO4 [20, 21], dolomite

CaMg(CO3)2 [22, 23], and Ag2Cr2O7.

The values of solubility products Ksp (usually represented by solubility constant pKsp =

�logKsp value) are known for stoichiometric precipitates of AaBb or AaBbCc type, related to

dissociation reactions:

Ksp ¼ ½A�a½B�bfor AaBb ¼ aAþ bB, or ð1Þ

Ksp ¼ ½A�a½B�b½C�cfor AaBbCc ¼ aAþ bBþ cC ð2Þ

where A and B or A, B, and C are the species forming the related precipitate; charges are

omitted here, for simplicity of notation. The solubility products for more complex precipitates

are unknown in the literature. The precipitates AaBbCc are known as ternary salts [24], e.g.,

struvite, dolomite, and hydroxyapatite Ca5(PO4)3OH.

The solubility products for precipitates of AaBb type are most frequently met in the literature.

In these cases, for A are usually put simple cations of metals, or oxycations [25]; e.g., BiO+1 and

UO2
+2 form the precipitates: BiOCl and (UO2)2(OH)2. As B, simple or more complex anions

are considered, e.g., Cl�1, S�2, PO4
�3, Fe(CN)6

�4, in AgCl, HgS, Zn3(PO4)2, and Zn2Fe(CN)6.

In different textbooks, the solubility products are usually formulated for dissociation reactions,

with ions as products, also for HgS

HgS ¼ Hgþ2 þ S–2ðKsp ¼ ½Hgþ2�½S�2�Þ ð3Þ

although polar covalent bond exists between its constituent atoms [26]. Very low solubility

product value (pKsp = 52.4) for HgS makes the dissociation according to the scheme presented

by Eq. (3) impossible, and even verbal formulation of the solubility product is unreasonable.

Namely, the ionic product x = [Hg+2][S–2] calculated at [Hg+2] = [S–2] = 1/NA exceeds Ksp, 1/NA
2

> Ksp (NA – Avogadro’s number); the concentration 1/NA = 1.66∙10–23 mol/L corresponds to 1

ion in 1 L of the solution. The scheme of dissociation into elemental species [14]
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HgS ¼ Hgþ S ðKsp1 ¼ ½Hg�½S�Þ ð4Þ

is far more favored from thermodynamic viewpoint; nonetheless, the solubility product (Ksp)

for HgS is commonly formulated on the basis of reaction (3). We obtain pKsp1 = pKsp – 2A

(E01�E02), where E01 = 0.850 V for Hg+2 + 2e–1 = Hg, E02 = –0.48 V for S + 2e–1 = S–2, 1/A = RT/

F�ln10, A = 16.92 for 298 K; then pKsp1 = 7.4.

Equilibrium constants are usually formulated for the simplest reaction notations. However, in

this respect, Eq. (4) is simpler than Eq. (3). Moreover, we are “accustomed” to apply solubility

products with ions (cations and anions) involved, but this custom can easily be overthrown. A

similar remark may concern the notation referred to elementary dissociation of mercuric

iodide precipitate

HgI2 ¼ Hgþ I2ðKsp1 ¼ ½Hg�½I2�Þ ð5Þ

where I2 denotes a soluble form of iodine in a system. From

HgI2 ¼ Hgþ2 þ 2I�1ðKsp ¼ ½Hgþ2�½I�1�2, pKsp ¼ 28:55Þ ð6Þ

we obtain pKsp1 = pKsp – 2A(E01–E03), where

E01 ¼ 0:850 V for Hgþ2 þ 2e�1 ¼ Hg, E03 ¼ 0:621 V for I2 þ 2e�1 ¼ 2I�1; then pKsp1 ¼ 20:80:

The species in the expression for solubility products do not predominate in real chemical

systems, as a rule. However, the precipitation ofHgS from acidified (HCl) solution of mercury

salt with H2S solution can be presented in terms of predominating species; we have

HgCl�2
4 þH2S ¼ HgSþ 4Cl–1 þ 2Hþ1 ð7Þ

Eq. (7) can be applied to formulate the related solubility product, Ksp2, for HgS. To be online

with customary requirements put on the solubility product formulation, Eq. (7) should be

rewritten into the form

HgSþ 4Cl–1 þ 2Hþ1 ¼ HgCl�2
4 þH2S ð7aÞ

Applying the law of mass action to Eq. (7a), we have

Ksp2 ¼
½HgCl�2

4 �½H2S�

½Cl�1�4½Hþ1�2
, ðpKsp2 ¼ 17:33Þ ð8Þ

where [HgCl4
–2] = 1015.07[Hg+2][Cl–1]4, [H2S] = 1020.0[H+1]2[S–2], Ksp (Eq. (3)).

The solubility product for MgNH4PO4 can be formulated on the basis of reactions:

MgNH4PO4 ¼ Mgþ2 þNHþ1
4 þ PO�3

4 ðKsp ¼ ½Mgþ2�½NHþ1
4 �½PO�3

4 �Þ ð9Þ

MgNH4PO4 ¼ Mgþ2 þNH3 þHPO�2
4 ðKsp1 ¼ ½Mgþ2�½NH3�½HPO�2

4 � ¼ KspK1N=K3PÞ ð10Þ
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MgNH4PO4 þH2O ¼ MgOHþ1 þNH3 þH2PO
�1
4 ðKsp2 ¼ ½MgOHþ1�½NH3�½H2PO

�1
4 �

¼ KspK
OH
1 K1NKW=ðK2PK3PÞ

ð11Þ

where K1N = [H+1][NH3]/[NH4
+1], K2P = [H+1][HPO4

–2]/[H2PO4
–1], K3P = [H+1][PO4

–3]/[HPO4
–2],

[MgOH+1] = K1
OH[Mg+2][OH–1], KW = [H+1][OH–1].

Note that only uncharged (elemental) species are involved in Eqs. (4) and (5); H2S enters

Eq. (8), and NH3 enters Eqs. (10) and (11). This is an extension of the definition/formulation

commonly met in the literature, where only charged species were involved in expression for

the solubility product. Note also that small/dispersed mercury drops are neutralized with

powdered sulfur, according to thermodynamically favored reaction [27]

Hgþ S ¼ HgS

reverse to Eq. (4). Some precipitates can be optionally considered as the species of AaBb or

AaBbCc type. For example, the solubility product for MgHPO4 can be written as Ksp = [Mg+2]

[HPO4
–2] or Ksp1 = [Mg+2][H+1][PO4

–3] = KspK3P.

The ferrocyanide ion Fe(CN)6
–4 (with evaluated stability constant K6 ca. 10

37) can be consid-

ered as practically undissociated, i.e., Fe(CN)6
–4 is kinetically inert [28], and then it does not

give Fe+2 and CN–1 ions. The solubility product of Zn2Fe(CN)6 is Ksp = [Zn+2]2[Fe(CN)6
–4].

Therefore, consideration of Zn2Fe(CN)6 as a ternary salt with Ksp1 = [Zn
+2]2[Fe2+][CN–1]6 = Ksp/

K6 is not acceptable.

In principle, the solubility product values are formulated for stoichiometric compounds, and

specified as such in the related tables. However, some precipitates obtained in laboratory have

nonstoichiometric composition, e.g., dolomite Ca1+xMg1-x(CO3)2 [22, 23], FexS [29]. In particu-

lar, FexS can be rewritten as Fe+2pFe
+3

qS; from the relations: 2p + 3q � 2 = 0 and p + q = x, we get

q/p = 2(1 � x)/(3x � 2).

In this context, some remark needs a formulation of Ksp for some hydroxyoxides (e.g., FeOOH)

and oxides (e.g., Ag2O). The related solubility products are formulated after completion of the

corresponding reactions with water, e.g., FeOOH + H2O = Fe(OH)3, Fe2O3∙xH2O + (3 � x)H2O =

2Fe(OH)3 ) Fe(OH)3 = Fe+3 + 3OH–1 ) Ksp = [Fe+3][OH–1]3; Ag2O + H2O = 2AgOH ) AgOH =

Ag+1 + OH–1 ) Ksp = [Ag+1][OH–1], see it in the context with gcd(a,b) = 1.

The solubility product can be involved not only with dissociation reaction. For example, the

dissolution reaction Ca(OH)2 + 2H+1 = Ca+2 + 2H2O [30], characterized by Ksp1 = [Ca+2]/[H+1]2,

is involved with Ksp = [Ca+2][OH–1]2 in the relation Ksp1 = Ksp/Kw
2. In Ref. [31], the solubility

product is associated with formation (not dissociation) of a precipitate.

3. Solubility product(s) for MnO2

The scheme presented above cannot be extended to all oxides. For example, one cannot

recommend the formulation of this sequence for MnO2, i.e., MnO2 + 2H2O = Mn(OH)4 )
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Mn(OH)4 = Mn+4 + 4OH–1 ) Ksp0 = [Mn+4][OH–1]4; Mn+4 ions do not exist in aqueous media,

and MnO2 is the sole Mn(+4) species present in such systems. In effect, Ksp0 for MnO2 is not

known in the literature, compare with Ref. [32]. However, the Ksp for MnO2 can be formally

calculated according to an unconventional approach, based on the disproportionation reaction

5MnO2 þ 4Hþ1 ¼ 2MnO�1
4 þ 3Mnþ2 þH2O ð12Þ

reverse to the symproportionation reaction 2MnO4
�1 + 3Mn+2 + H2O = 5MnO2 + 4H+1. The

Ksp = Ksp1 value can be found there on the basis of E01 and E02 values [33], specified for reactions:

MnO�1
4 þ 4Hþ1 þ 3e�1 ¼ MnO2 þ 2H2OðE01 ¼ 1:692 VÞ ð13Þ

MnO2 þ 4Hþ1 þ 2e�1 ¼ Mnþ2 þ 2H2OðE02 ¼ 1:228 VÞ ð14Þ

Eqs. (13) and (14) are characterized by the equilibrium constants:

Ke1 ¼
½MnO2�½H2O�2

½MnO�1
4 �½Hþ1�4½e�1�3

, Ke2 ¼
½Mnþ2�½H2O�2

½MnO2�½H
þ1�4½e�1�2

ð15Þ

defined on the basis of mass action law (MAL) [14], where logKe1 = 3�A�E01, logKe2 = 2�A�E02,

A = 16.92. From Eqs. (13) and (14), we get

2MnO2 þ 4H2Oþ 3MnO2 þ 12Hþ1 þ 6e�1 ¼ 2MnO�1
4 þ 8Hþ1 þ 6e�1 þ 3Mnþ2 þ 6H2O

ð16Þ

Assuming [MnO2] = 1 and [H2O] = 1 on the stage of the Ksp1 formulation for reaction (16),

equivalent to reaction (12), we have

Ksp1 ¼
½MnO�1

4 �2½Mnþ2�3

½Hþ1�4
ð17Þ

and then

Ksp1 ¼ ðKe2Þ
3 � ðKe1Þ

�2 ð18Þ

pKsp1 ¼ 3logKe2 � 2logKe1 ¼ 6AðE01 � E02Þ ¼ 6 � 16:92 � ð1:692� 1:228Þ ¼ 47:11 ð19Þ

The solubility products withMnO2 involved can be formulated on the basis of other reactions.

For example, addition of

Mnþ2 ¼ Mnþ3 þ e�1 ð20Þ

to Eq. (14) gives
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MnO2 þ 4Hþ1 þ 2e�1 þMnþ2 ¼ Mnþ2 þ 2H2OþMnþ3 þ e�1 ð21Þ

Multiplication of Eq. (21) by 3, and then addition to Eq. (13a)

MnO2 þ 2H2O ¼ MnO�1
4 þ 4Hþ1 þ 3e�1

(reverse to Eq. (13)) gives the equation

3MnO2 þ 12Hþ1 þ 6e�1 þ 3Mnþ2 þMnO2 þ 2H2O

¼ 3Mnþ2 þ 6H2Oþ 3Mnþ3 þ 3e�1 þMnO�1
4 þ 4Hþ1 þ 3e�1

ð22Þ

and its equivalent form, obtained after simplifications,

4MnO2 þ 8Hþ1 ¼ 3Mnþ3 þMnO�1
4 þ 4H2O ð22aÞ

Eq. (22) and then Eq. (22a) is characterized by the solubility product

Ksp2 ¼
½MnO�1

4 �½Mnþ3�3

½Hþ1�8
¼ ðKe2Þ

3 � ðKe3Þ
�3 � ðKe1Þ

�1 ð23Þ

where

Ke3 ¼
½Mnþ2�

½Mnþ3�½e�1�
ð24Þ

for Mn+3 + e�1 = Mn+2 (E03 = 1.509 V) (reverse to Eq. (20)), logKe3 = A�E03. Then

pKsp2 ¼ 3A∙ðE01 � 2E02þE03Þ þ 37:82 ð25Þ

Formulation of Kspi for other combinations of redox and/or nonredox reactions is also possible.

This way, some derivative solubility products are obtained. The choice between the “output”

and derivative solubility product values is a matter of choice. Nevertheless, one can choose the

Ksp3 value related to the simplest expression for the solubility product Ksp3 = [Mn+2][MnO4
�2]

involved with reaction 2MnO2 = Mn+2 + MnO4
�2.

As results from calculations, the low Kspi (i = 1,2,3) values obtained from the calculations

should be crossed, even in acidified solution with the related manganese species presented in

Figure 1. In the real conditions of analysis, at Ca = 1.0 mol/L, the system is homogeneous

during the titration, also after crossing the equivalence point, at Φ = Φeq > 0.2; this indicates

that the corresponding manganese species form a metastable system [34], unable for the

symproportionation reactions.
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4. Calculation of solubility

In this section, we compare two options applied to the subject in question. The first/criticized

option, met commonly in different textbooks, is based on the stoichiometric considerations,

resulting from dissociation of a precipitate, characterized by the solubility product Ksp value,

and considered a priori as an equilibrium solid phase in the system in question; the solubility

value obtained this way will be denoted by s* [mol/L]. The second option, considered as a

correct resolution of the problem, is based on full physicochemical knowledge of the system,

not limited only to Ksp value (as in the option 1); the solubility value thus obtained is denoted

as s [mol/L]. The second option fulfills all requirements expressed in GATES and involved with

basic laws of conservation in the systems considered. Within this option, we check, among

others, whether the precipitate is really the equilibrium solid phase. The results (s*, s) obtained

according to both options (1 and 2) are compared for the systems of different degree of

complexity. The unquestionable advantages of GATES will be stressed this way.

4.1. Formulation of the solubility s*

The solubility s* will be calculated for a pure precipitate of: (1o) AaBb or (2o) AaBbCc type,

when introduced into pure water. Assuming [A] = a∙s* and [B] = b∙s*, from Eq. (1), we have

0.0 0.1 0.2 0.3 0.4

F

-20

-16

-12

-8

-4

0

lo
g
[X

i]

MnO 4
-2

Mn(OH) +1

MnSO4

Mn+2

MnO 4
-1

MnO 4
-1

Mn(OH) +2

Mn(OH) +2

Mn+3

Figure 1. The log[Xi] versus Φ relationships for different manganese species Xi, plotted for titration of V0 = 100 mL

solution of FeSO4 (C0 = 0.01 mol/L) + H2SO4 (Ca = 1.0 mol/L) with V mL of C = 0.02 mol/L KMnO4; Φ = C�V/(C0�V0). The

species Xi are indicated at the corresponding lines.
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s∗ ¼
Ksp

aa � bb

� �1=ðaþbÞ

ð26Þ

and assuming [A] = a∙s*, [B] = b∙s*, [C] = c∙s*, from Eq. (2), we have

s∗ ¼
Ksp

aa � bb � cc

� �1=ðaþbþcÞ

ð27Þ

As a rule, the formulas (26) and (27) are invalid for different reasons, indicated in this chapter.

This invalidity results, among others, from inclusion of the simplest/minor species in Eq. (26)

or (27) and omission of hydroxo-complexes + other soluble complexes formed by A, and proto-

complexes + other soluble complexes, formed by B. In other words, not only the species

entering the expression for the related solubility product are present in the solution consid-

ered. Then the concentrations: [A], [B] or [A], [B], and [C] are usually minor species relative to

the other species included in the respective balances, considered from the viewpoint of

GATES [8].

4.2. Dissolution of hydroxides

We refer first to the simplest two-phase systems, with insoluble hydroxides as the solid phases.

In all instances, s* denotes the solubility obtained from stoichiometric considerations, whereas

s relates to the solubility calculated on the basis of full/attainable physicochemical knowledge

related to the system in question where, except the solubility product (Ksp), other physico-

chemical data are also involved.

Applying formula (26) to hydroxides (B = OH�1): Ca(OH)2 (pKsp1 = 5.03) and Fe(OH)3
(pKsp2 = 38.6), we have [35]

CaðOHÞ2 ¼ Caþ2 þ 2OH�1ðKsp1 ¼ ½Caþ2�½OH�1�2, s� ¼ ðKsp1=4Þ
1=3 ¼ 0:0133 mol=LÞ ð28Þ

FeðOHÞ3 ¼ Feþ3 þ 3OH�1ðKsp2 ¼ ½Feþ3�½OH�1�3, s� ¼ ðKsp2=27Þ
1=4 ¼ 0:98� 10–10mol=LÞ

ð29Þ

respectively. However, Ca+2 and Fe+3 form the related hydroxo-complexes: [CaOH+1] =

101.3�[Ca+2][OH�1] and: [FeOH+2] = 1011.0�[Fe+3][OH�1], [Fe(OH)2
+1] = 1021.7�[Fe+3][OH�1]2;

[Fe2(OH)2
+4] = 1025.1�[Fe+3]2[OH�1]2 [31]. The corrected expression for the solubility of Ca(OH)2

is as follows

s ¼ ½Caþ2� þ ½CaOHþ1� ð30Þ

Inserting [Ca+2] = Ksp1/[OH�1]2 and [OH�1] = KW/[H+1], [H+1] = 10�pH (pKW = 14.0 for ionic

product of water, KW) into the charge balance
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2½Caþ2� þ ½CaOHþ1� þ ½Hþ1�–½OH�1� ¼ 0 ð31Þ

we get, by turns,

2 � 10�5:03=½OH�1�2 þ 101:3 � 10�5:03=½OH�1�½Hþ1� � ½OH�1� ¼ 0

) 2 � 10�5:03þ28�2pH þ 101:3 � 10�5:03þ14�pH þ 10�pH
–10pH�14 ¼ 0

yðpHÞ ¼ 2 � 1022:97�2pH þ 1010,17�pH þ 10�pH
–10pH�14 ¼ 0 ð32Þ

where pH ¼ �log½Hþ1�. Applying the zeroing procedure to Eq. (30), we get pH0 = 12.453

(Table 1), where: [Ca+2] = 0.0116, [CaOH+1] = 0.00656, s = 0.0182 mol/L (Eq. (28)). As we see,

[CaOH+1] is comparable with [Ca+2], and there are none reasons to omit [CaOH+1] in Eq. (28).

The alkaline reaction in the system with Ca(OH)2 results immediately from Eq. (29): [OH�1] –

[H+1] = 2½Caþ2� þ ½CaOHþ1� > 0:

Analogously, for the system with Fe(OH)3, we have the charge balance

3½Feþ3� þ 2½FeOHþ2� þ ½FeðOHÞþ1
2 � þ 4½Fe2ðOHÞþ4

2 � þ ½Hþ1�–½OH�1� ¼ 0 ð33Þ

and then

yðpHÞ ¼ 3 � 103:4�3pH þ 2 � 100:4�2pH þ 10�2:9�pH þ 4 � 103:9�4pH þ 10�pH
–10pH�14 ¼ 0 ð34Þ

Eq. (32) zeroes at pH0 = 7.0003 (Table 2), where the value

s ¼ ½Feþ3� þ ½FeOHþ2� þ ½FeðOHÞþ1
2 � þ 2½Fe2ðOHÞþ4

2 � ð35Þ

is close to s ffi [Fe(OH)2
+1] = 10–9.9. Alkaline reaction for this system, i.e., [OH�1] > [H+1], results

immediately from Eq. (30), and pH0 = 7.0003 (>7).

At pH = 7, Fe(OH)2
+1 (not Fe+3) is the predominating species in the system, [Fe(OH)2

+1]/[Fe+3] =

1021.7–14 = 5�107, i.e., the equality/assumption s* = [Fe+3] is extremely invalid. Moreover, the

value [OH�1] = 3�s* = 2.94�10–10 = 10–9.532, i.e., pH = 4.468; this pH-value is contradictory with

the inequality [OH�1] > [H+1] resulting from Eq. (31). Similarly, extremely invalid result was

pH y(pH) [OH�1] [Ca+2] [CaOH+1]

12.451 0.000377 0.02825 0.01169 0.006592

12.452 0.000193 0.02831 0.01164 0.006577

12.453 8.30E-06 0.02838 0.01159 0.006561

12.454 �0.000176 0.02844 0.01153 0.006546

12.455 �0.000359 0.02851 0.01148 0.006531

Table 1. Zeroing the function (30) for the system with Ca(OH)2 precipitate introduced into pure water (copy of a

fragment of display).
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obtained in Ref. [36], where the strong hydroxo-complexes were totally omitted, and weak

chloride complexes of Fe+3 ions were included into considerations.

Taking only the main dissociating species formed in the solution saturated with respect to

Fe(OH)3, we check whether the reaction Fe(OH)3 = Fe(OH)2
+1 + OH�1 with Ksp1 = [Fe(OH)2

+1]

[OH�1] = 1021.7�10–38.6 = 10–16.9 can be used for calculation of solubility s0 ¼ ðKsp1Þ
1=2 for

Fe(OH)3; the answer is also negative. Simply, the main part of OH�1 ions originates here from

dissociation of water, where the precipitate has been introduced, and then Fe(OH)2
+1 and

OH�1 differ significantly. As we see, the diversity in Ksp value related to a precipitate depends

on its dissociation reaction notation, which disqualifies the calculation of s* based solely on the

Ksp value. This fact was not stressed in the literature issued hitherto.

Concluding, the application of the option 1, based on the stoichiometry of the reaction (29),

leads not only to completely inadmissible results for s+, but also to a conflict with one of the

fundamental rules of conservation obligatory in electrolytic systems, namely the law of charge

conservation.

Similarly, critical/disqualifying remarks can be related to the series of formulas considered in

the chapter [37], e.g., Ksp = 27(s*)4 for precipitates of A3B and AB3 type, and Ksp = 108(s*)5 for

A2B3 and A3B2. For Ca5(PO4)3OH, the formula Ksp = 84375(s*)9 (!) was applied [38].

As a third example let us take a system, where an excess of Zn(OH)2 precipitate is introduced

into pure water. It is usually stated that Zn(OH)2 dissociates according to the reaction

ZnðOHÞ2 ¼ Znþ2 þ 2 OH�1 ð36Þ

applied to formulate the expression for the solubility product

Ksp3 ¼ ½Znþ2�½OH�1�2ðpKsp3 ¼ 15:0Þ ð37Þ

The soluble hydroxo-complexes Zn(OH)i
+2�i (i=1,…,4), with the stability constants, Ki

OH,

expressed by the values logKi
OH = 4.4, 11.3, 13.14, 14.66, are also formed in the system in

question. The charge balance (ChB) has the form

pH y(pH) [Fe+3] [FeOH+2] [Fe(OH)2
+1] [Fe2(OH)2

+4]

7.0001 7.99E-11 2.510E-18 2.511E-14 1.259E-10 7.936E-25

7.0002 3.38E-11 2.508E-18 2.510E-14 1.258E-10 7.929E-25

7.0003 �1.23E-11 2.507E-18 2.508E-14 1.258E-10 7.921E-25

7.0004 �5.84E-11 2.505E-18 2.507E-14 1.258E-10 7.914E-25

7.0005 �1.04E-10 2.503E-18 2.506E-14 1.257E-10 7.907E-25

Table 2. Zeroing the function (32) for the system with Fe(OH)3 precipitate introduced into pure water (copy of a

fragment of display).
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2½Znþ2� þ ½ZnOHþ1�–½ZnðOHÞ�1
3 � � 2½ZnðOHÞ�2

4 � þ ½Hþ1� � ½OH�1� ¼ 0 ð38Þ

i.e., 2�10�15/[OH�1]2 + 104.4�10�15/[OH�1] – 1013.14�10�15
∙[OH�1] – 2�1014.66�10�15

∙[OH�1]2 = 0

yðpHÞ ¼ 2 � 1013�2pH þ 103:4�pH
–10�15:86þpH

–2 � 10�28:34þ2pH þ 10�pH
–10pH�14 ¼ 0 ð39Þ

The function (39) zeroes at pH0 = 9.121 (see Table 3). The basic reaction of this system is not

immediately stated from Eq. (38) (there are positive and negative terms in expression for

[OH�1] � [H+1]). The solubility s value

s ¼ ½Znþ2� þ ½ZnOHþ1� þ ½ZnðOHÞ2� þ ½ZnðOHÞ�1
3 � þ ½ZnðOHÞ�2

4 � ¼ 2:07 � 10�4

calculated at this point is different from s* = (Kso3/4)
1/3 = 6.3�10�6, and [OH�1]/[Zn+2] 6¼ 2; such

incompatibilities contradict application of this formula.

4.3. Dissolution of MeL2-type salts

Let us refer now to dissolution of precipitates MeL2 formed by cations Me+2 and anions L�1 of

a strong acid HL, as presented in Table 4. When an excess of MeL2 is introduced into pure

water, the concentration balances and charge balance in two-phase system thus formed are as

follows:

Me+2 MeOH+1 Me(OH)2 Me(OH)3
�1 L�1 MeL+1 MeL2 MeL3

�1 MeL4
�2 MeL2

logK1
OH logK2

OH logK3
OH logK1 logK2 logK3 logK4 pKsp

Hg+2 10.3 21.7 21.2 I�1 12.87 23.82 27.60 29.83 28.54

Pb+2 6.9 10.8 13.3 I�1 1.26 2.80 3.42 3.92 8.98

Cl�1 1.62 2.44 2.04 1.0 4.79

Table 4. logKi
OH and logKi values for the stability constants Ki and Kj of soluble complexes Me(OH)i

+2-i and MeLj
+2-j and

pKsp values for the precipitates MeL2; [MeLi
+2-i] = Ki[Me+2][L�1]i, Ksp = [Me+2][L�1]2.

pH [OH�1] [Zn+2] [ZnOH+1] [Zn(OH)2] [Zn(OH)3
�1] [Zn(OH)4

�2] y(pH) s [mol/L]

9.118 1.3122E-05 5.8076E-06 1.9143E-06 0.0002 1.8113E-07 7.8705E-11 2.2702E-07 0.00020743

9.119 1.3152E-05 5.7810E-06 1.9099E-06 0.0002 1.8155E-07 7.9068E-11 1.3858E-07 0.00020740

9.120 1.3183E-05 5.7544E-06 1.9055E-06 0.0002 1.8197E-07 7.9433E-11 5.0322E-08 0.00020737

9.121 1.3213E-05 5.7280E-06 1.9011E-06 0.0002 1.8239E-07 7.9800E-11 �3.7750E-08 0.00020734

9.122 1.3243E-05 5.7016E-06 1.8967E-06 0.0002 1.8281E-07 8.0168E-11 �1.2564E-07 0.00020731

9.123 1.3274E-05 5.6755E-06 1.8923E-06 0.0002 1.8323E-07 8.0538E-11 �2.1335E-07 0.00020728

Table 3. Zeroing the function (39) for the system with Zn(OH)2 precipitate introduced into water; pKW = 14.
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½MeL2� þ ½Meþ2� þ
X

I

i¼1

½MeðOHÞþ2�i
i � þ

X

J

j¼1

½MeL
þ2�j
j � ¼ CMe ð40Þ

2½MeL2� þ ½L�1� þ
X

J

j¼1

j½MeL
þ2�j
j � ¼ CL ð41Þ

½Hþ1� � ½OH�1� þ 2½Meþ2� þ
X

I

i¼1

ð2� iÞ½MeðOHÞþ2�i
i � þ

X

J

j¼1

ð2� jÞ½MeL
þ2�j
j � � ½L�1� ¼ 0 ð42Þ

where [MeL2] denotes the concentration of the precipitate MeL2. At CL = 2CMe, we have

2½Meþ2� þ 2
X

I

i¼1

½MeðOHÞþ2�i
i � þ

X

J

j¼1

ð2� jÞ½MeL
þ2�j
j � ¼ ½L�1� ð43Þ

From Eqs. (40) and (41)

α ¼ ½Hþ1� � ½OH�1� ¼
X

I

i¼1

i½MeðOHÞþ2�i
i � ð44Þ

i.e., reaction of the solution is acidic, [H+1] > [OH�1]. Applying the relations for the equilibrium

constants:

[Me+2][L�1]2 = Ksp, [Me(OH)i
+2�i] = Ki

OH[Me+2][OH�1]i (i = 1,…, I), [MeLj
+2�j] = Kj[Me+2][L�1]j

(j = 1,…, J)

from Eqs. (43) and (44) we have

2½Meþ2�3=2 � ð1þ ð1þ
X

I

i¼1

xiÞ þ Ksp
1=2 � ½Meþ2� �

X

J

j¼1

ð2� jÞKj½L
�1� � Ksp

1=2 ¼ 0 ð45Þ

where

½Meþ2� ¼
α

X

I

i¼1

i � xi

;α ¼ ½Hþ1� � ½OH�1� ¼ 10�pH � 10pH�pKW ; ½L�1�

¼
Ksp

½Meþ2�

� �1=2
; xi ¼ KOH

i � ðKW=½Hþ1�Þi

In particular, for I = 3, J = 4 (Table 4), we have
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2 � 1þ
X

3

i¼1

xi

 !

�
½Me�2

Ksp
1=2

þ K1 � ½Me�3=2 � ðK3 � Ksp þ 1Þ � ½Me�1=2 � 2 � K4 � Ksp
3=2 ¼ 0 ð46Þ

Applying the zeroing procedure to Eq. (46) gives the pH = pH0 of the solution at equilibrium.

At this pH0 value, we calculate the concentrations of all species and solubility of this precipi-

tate recalculated on sMe and sL. When zeroing Eq. (46), we calculate pH = pH0 of the solution in

equilibrium with the related precipitate. The solubilities are as follows:

s ¼ sMe ¼ ½Meþ2� þ
X

I

i¼1

½MeðOHÞi
þ2�i� þ

X

J

j¼1

½MeLj
þ2�j� ð47Þ

s ¼ sL ¼ ½L�1� þ
X

4

j¼1

j½MeLj
þ2�j� ð48Þ

The calculations of sMe and sL for the precipitates specified in Table 4 can be realized with use

of Excel spreadsheet, according to zeroing procedure, as suggested above (Table 1).

For PbI2: pH0 = 5.1502, sPb = 6.5276∙10
�4, sI = 1.3051∙10

�3, see Table 6. The difference between sI
and 2sPb = 1.3055∙10�3 results from rounding the pH0-value.

For HgI2: pH0 = 6.7769, sHg = 1.91217∙10�5, sI = 3.82435∙10�5, see Table 7. The difference

between sI and 2sHg = 3.82434∙10�5 results from rounding the pH-value. The concentration

[HgI2] = K2Ksp = 1.90546∙10�5 is close to the sHg value. For comparison, 4(s*)3 = Ksp ⟹ s* =

1.93∙10�10, i.e., s*/s ≈ 10�5.

pH [Pb+2] [PbOH+1] [Pb(OH)2] [Pb(OH)3
-1] [PbCl+1] [PbCl2] [PbCl3

�1] [PbCl4
�2] [Cl�1] y

4.5343 0.010749606 2.92208E-05 7.94315E-11 8.59592E-18 0.017405892 0.004466836 6.90723E-05 2.44685E-07 0.038842191 0.000138249

4.5344 0.010744657 2.92141E-05 7.94315E-11 8.5979E-18 0.017401884 0.004466836 6.90882E-05 2.44798E-07 0.038851136 7.7139E-05

4.5345 0.01073971 2.92074E-05 7.94315E-11 8.59988E-18 0.017397878 0.004466836 6.91041E-05 2.44911E-07 0.038860083 1.60945E-05

4.5346 0.010734765 2.92007E-05 7.94315E-11 8.60186E-18 0.017393872 0.004466836 6.912E-05 2.45023E-07 0.038869032 -4.48848E-05

4.5347 0.010729823 2.91939E-05 7.94315E-11 8.60384E-18 0.017389867 0.004466836 6.91359E-05 2.45136E-07 0.038877983 -0.000105799

Table 5. Fragment of display for PbCl2.

pH [Pb+2] [PbOH+1] [Pb(OH)2] [Pb(OH)3
�1] [PbI+1] [PbI2] [PbI3

�1] [PbI4
�2] [I�1] y

5.15 0.000630817 7.07789E-06 7.94152E-11 3.54735E-17 1.47894E-05 6.60693E-07 3.54853E-09 1.44576E-11 0.001288393 0.000138249

5.1501 0.000630527 7.07626E-06 7.94152E-11 3.54816E-17 1.4786E-05 6.60693E-07 3.54935E-09 1.44643E-11 0.001288689 7.7139E-05

5.1502 0.000630236 7.07463E-06 7.94152E-11 3.54898E-17 1.47826E-05 6.60693E-07 3.55016E-09 1.44709E-11 0.001288986 1.60945E-05

5.1503 0.000629946 7.073E-06 7.94152E-11 3.5498E-17 1.47792E-05 6.60693E-07 3.55098E-09 1.44776E-11 0.001289283 -4.48848E-05

5.1504 0.000629656 7.07137E-06 7.94152E-11 3.55061E-17 1.47758E-05 6.60693E-07 3.5518E-09 1.44843E-11 0.00128958 -0.000105799

Table 6. Fragment of display for PbI2.

Descriptive Inorganic Chemistry Researches of Metal Compounds106



4.4. Dissolution of CaCO3 in the presence of CO2

The portions 0.1 g of calcite CaCO3 (M = 100.0869 g/mol, d = 2.711 g/cm3) are inserted into 100 mL

of: pure water (task A) or aqueous solutions of CO2 specified in the tasks: B1, B2, B3, and

equilibrated. Denoting the starting (t = 0) concentrations [mol/L]: Co for CaCO3 and CCO2
for

CO2 in the related systems, on the basis of equilibrium data collected in Table 8:

(A) we calculate pH = pH01 and solubility s = s(pH01) of CaCO3 at equilibrium in the system;

(B1) we calculate pH = pH02 and solubility s = s(pH02) of CaCO3 in the system, where CCO2

refers to saturated (at 25 oC) solution of CO2, where 1.45 g CO2 dissolves in 1 L of water [39].

(B2) we calculate minimal CCO2
in the starting solution needed for complete dissolution of

CaCO3 in the system and the related pH = pH03 value, where s = s(pH03) = Co;

(B3) we plot the logsCa versus V, pH versus Vand logsCa versus pH relationships for the system

obtained after addition of V mL of a strong base MOH (Cb = 0.1) into V0 = 100 mL of the system

with CaCO3 presented in (B1). The quasistatic course of the titration is assumed.

The volume 0.1/2.711 = 0.037 cm3 of introduced CaCO3 is negligible when compared with V0 at

the start (t = 0) of the dissolution. Starting concentration of CaCO3 in the systems: A, B1, B2, B3

is Co = (0.1/100)/0.1 = 10�2 mol/L. At t > 0, concentration of CaCO3 is c
o mol/L. The balances are

as follows:

pH [Hg+2] [HgOH+1] [Hg(OH)2] [Hg(OH)3
�1] [HgI+1] [HgI2] [HgI3

�1] [HgI4
�2] [I�1] y

6.7767 2.99681E-15 3.57569E-12 5.37106E-08 1.01569E-15 2.17936E-09 1.90546E-05 1.12634E-08 1.87646E-13 9.81003E-08 1.35932E-10

6.7768 2.99398E-15 3.57313E-12 5.36844E-08 1.01543E-15 2.17833E-09 1.90546E-05 1.12688E-08 1.87824E-13 9.81467E-08 7.72021E-11

6.7769 2.99114E-15 3.57056E-12 5.36583E-08 1.01517E-15 2.1773E-09 1.90546E-05 1.12741E-08 1.88002E-13 9.81932E-08 1.8567E-11

6.777 2.98831E-15 3.568E-12 5.36322E-08 1.0149E-15 2.17627E-09 1.90546E-05 1.12794E-08 1.88181E-13 9.82398E-08 -3.99731E-11

6.7771 2.98548E-15 3.56544E-12 5.3606E-08 1.01464E-15 2.17524E-09 1.90546E-05 1.12848E-08 1.88359E-13 9.82863E-08 -9.84182E-11

Table 7. Fragment of display for HgI2.

No. Reaction Expression for the equilibrium constant Equilibrium data

1 CaCO3 = Ca+2 + CO3
�2 [Ca+2][CO3

�2] = Ksp pKsp = 8.48

2 Ca+2 + OH�1 = CaOH+1 [CaOH+1] = K10[Ca
+2][OH�1] logK10 = 1.3

3 H2CO3 = H+1 + HCO3
�1 [H+1][HCO3

�1] = K1[H2CO3] pK1 = 6.38

4 HCO3
�1 = H+1 + CO3

�2 [H+1][CO3
�2] = K2[HCO3

-1] pK2 = 10.33

5 Ca+2 + HCO3
�1 = CaHCO3

+1 [CaHCO3
+1] = K11[Ca

+2][HCO3
�1] logK11 = 1.11

6 Ca+2 + CO3
�2 = CaCO3 [CaCO3] = K12[Ca

+2][CO3
�2] logK12 = 3.22

7 Ca(OH)2 = Ca+2 + 2OH�1 [Ca+2][OH�1]2 = Ksp1 pKsp1 = 5.03

8 H2O = H+1 + OH�1 [H+1][OH�1] = KW pKW = 14.0

Table 8. Equilibrium data.
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Co ¼ co þ ½Caþ2� þ ½CaOHþ1� þ ½CaHCOþ1
3 � þ ½CaCO3� ðfor A,B1,B2,B3Þ ð49Þ

Co ¼ co þ ½CaHCOþ1
3 � þ ½CaCO3� þ ½H2CO3� þ ½HCO�1

3 � þ CO�2
3 � ðfor AÞ ð50Þ

Co þ CCO2 ¼ co þ ½CaHCOþ1
3 � þ ½CaCO3� þ ½H2CO3� þ ½HCO�1

3 � þ ½CO�2
3 �ðfor B1,B2,B3Þ ð51Þ

½Hþ1� � ½OH�1� þ 2½Caþ2� þ ½CaOHþ1� þ ½CaHCOþ1
3 � � ½HCO�1

3 � � 2½CO�2
3 � ¼ 0ðfor A,B1,B2Þ

ð52Þ

½Hþ1� �½OH�1� þ ½Mþ1� þ 2½Caþ2� þ ½CaOHþ1� þ ½CaHCOþ1
3 � � ½HCO�1

3 � � 2½CO�2
3 � ¼ 0ðfor B3Þ

ð52aÞ

where [M+1] = CbV/(V0+V).

• For (A)

From Eqs. (49) and (50), we have

½Caþ2� þ ½CaOHþ1� ¼ ½H2CO3� þ ½HCO�1
3 � þ ½CO�2

3 � ð53Þ

Considering the solution saturated with respect to CaCO3 and denoting: f1 = 1016.71�2pH +

1010.33�pH + 1, f2 = 1 + 10pH�12.7, from Eq. (53) and Table 1, we have the relations:

½Caþ2�f 2 ¼ ½CO�2
3 � � f 1 ) ½Caþ2� ¼ 10�4:24 � ðf 1=f 2Þ

0:5; ½CO�2
3 � ¼ 10�4:24 � ðf 2=f 1Þ

0:5; ½CaOHþ1�

¼ 10pH�16:94 � ðf 1=f 2Þ
0:5;

½CaCO3� ¼ 10�5:26; ½CaHCOþ1
3 � ¼ 102:96�pH; ½HCO�1

3 � ¼ 106:09�pH � ðf2=f1Þ
0:5; ½Hþ1�

¼ 10�pH; ½OH�1� ¼ 10pH�14:

Inserting them into the charge balance (52), rewritten into the form

z ¼ zðpHÞ ¼ 10�pH � 10pH�14 þ 2 � 10�4:24 � ðf 1=f 2Þ
0:5 þ 10pH�16:94 � ðf 1=f 2Þ

0:5

þ102:96�pH
–106:09�pH � ðf 2=f 1Þ

0:5 � 2 � 10�4:24 � ðf 2=f 1Þ
0:5

ð54Þ

and applying the zeroing procedure to the function (54), we find pH01 = 9.904, at z = z

(pH01) = 0. The solubility s = s(pH) of CaCO3, resulting from Eq. (49), is

s ¼ ½Caþ2� þ ½CaOHþ1� þ ½CaHCOþ1
3 � þ ½CaCO3� ð55Þ

¼ 10�4:24 � ðf 1=f 2Þ
0:5 þ 10pH�16:94 � ðf 1=f 2Þ

0:5 þ 102:96�pH þ 10�5:26 ð55aÞ

We have s = s(pH = pH01) = 1.159�10�4 mol/L.

• For (B1)

Subtraction of Eq. (49) from Eq. (51) gives
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½H2CO3� þ ½HCO�1
3 � þ ½CO�2

3 � � ð½Caþ2� þ ½CaOHþ1�Þ

¼ CCO2 ) ½CO�2
3 � � f 1–½Ca

þ2� � f 2 � CCO2 ¼ 0 ) ½Caþ2�2 � f 2 þ CCO2 � ½Ca
þ2�–Ksp � f 1 ¼ 0

In this case,

½Caþ2� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðCCO2
Þ2 þ 4 � Ksp � f 1 � f 2

q

� CCO2

2 � f 2
ð56Þ

where CCO2
= 1.45/44 = 0.0329 mol/L. Eq. (55) has the form

s ¼ ½Caþ2� � f 2 þ 102:96�pH þ 10�5:26 ð57Þ

and the charge balance is transformed into the zeroing function

z ¼ zðpHÞ ¼ 10�pH � 10pH�14 þ ½Caþ2� � ð2þ 10pH�12:7Þ þ 102:96�pH � ½CO�2
3 � � ð1010:33�pH þ 2Þ

ð58Þ

where [CO3
�2] = 10-8.48/[Ca+2], and [Ca+2] is given by Eq. (56). Eq. (58) zeroes at pH = pH02

= 6.031. Then from Eq. (57) we calculate s = s(pH02) = 6.393∙10�3 mol/L, at pH = pH02 =

6.031.

• For (B2)

At pH = pH03, where co = 0, i.e., s = Co, the solution (a monophase system) is saturated

toward CaCO3, i.e., the relation [Ca+2][CO3
�2] = Ksp is still valid. Applying Eqs. (56) and

(57), we find pH values zeroing Eq. (58) at different, preassumed CCO2
values. Applying

these pH-values in Eq. (57), we calculate the related s = s(pH, CCO2
) values (Eq. (57),

Table 9). Graphically, CCO2
= 0.100 is found at pH03 = 5.683, as the abscissa of the point of

intersection of the lines: s = s(pH) and s = Co = 0.01. Table 9 shows other, preassumed

s = Co values.

• For (B3)

We apply again the formulas used in (B1) and (B2), and the charge balance (Eq. (52a)),

which is transformed there into the function

CCO2
0.090 0.091 0.092 0.093 0.094 0.095 0.096 0.097 0.098 0.099 0.100 0.101 0.102

pH 5.716 5.712 5.709 5.706 5.702 5.699 5.696 5.693 5.690 5.687 5.683 5.680 5.577

s 9.58E-3 9.64E-3 9.67E-3 9.70E-3 9.77E-3 9.80E-3 9.84E-3 9.87E-3 9.91E-3 9.94E-3 10.01E-3 10.06E-3 10.10E-3

Table 9. The set of points used for searching the CCO2
value at s = Co = 0.01; at this point, we have pH03 = 5.683.
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z ¼ zðpH,VÞ ¼ 10�pH � 10pH�14 þ CbV=ðV0 þ VÞ þ ½Caþ2� � ð2þ 10pH�12:7Þ

þ102:96�pH � ½CO�2
3 � � ð1010:33�pH þ 2Þ

ð59Þ

applied for zeroing purposes, at different V values. The data thus obtained are presented

graphically in Figures 2a–c. The data presented in the dynamic solubility diagram

(Figure 2b), illustrating the solubility changes affected by pH changes (Figure 2a)

resulting from addition of a base, MOH; Figure 2c shows a synthesis of these changes.

Solubility product of Ca(OH)2 is not crossed in this system.

5. Nonequilibrium solid phases in aqueous media

Some solids when introduced into aqueous media (e.g., pure water) may appear to be

nonequilibrium phases in these media.

5.1. Silver dichromate (Ag2Cr2O7)

The equilibrium data related to the system, where Ag2Cr2O7 is introduced into pure water, were

taken from Refs. [33, 40, 41], and presented in Table 10. A large discrepancy between pKsp2

values (6.7 and 10) in the cited literature is taken here into account. We prove that Ag2Cr2O7

changes into Ag2CrO4.

On the dissociation step, each dissolving molecule of Ag2Cr2O7 gives two ions Ag+1 and 1 ion

Cr2O7
�2, where two atoms of Cr are involved; in the contact with water, these ions are

hydrolyzed, to varying degrees. In the initial step of the dissolution, before the saturation of

the solution with respect to an equilibrium solid phase (not specified at this moment), we can

write the concentration balances

(a) (b) (c)

Figure 2. Graphical presentation of the data considered in (b3): (a) pH versus V, (b) log sCa versus V, (c) log sCa versus pH

relationships.
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2½Ag2Cr2O7� þ ½Agþ1�þ½AgOH� þ ½AgðOHÞ�1
2 � þ ½AgðOHÞ�2

3 � ¼ 2C0 ð60Þ

2½Ag2Cr2O7� þ ½H2CrO4�þ½HCrO�1
4 � þ ½CrO�2

4 � þ 2½HCr2O
�1
7 � þ 2½Cr2O

�2
7 � ¼ 2C0 ð61Þ

where 2C0 is the total concentration of the solid phase in the system, at the moment (t = 0) of

introducing this phase into water, [Ag2Cr2O7] is the concentration of this phase at a given

moment of the intermediary step. As previously, we assume that addition of the solid phase

(here: Ag2Cr2O7) does not change the volume of the system in a significant degree, and that

Ag2Cr2O7 is added in a due excess, securing the formation of a solid (that is not specified at

this moment), as an equilibrium solid phase. The balances in Eqs. (60) and (61) are completed

by the charge balance

½Hþ1� � ½OH�1� þ ½Agþ1� � ½AgðOHÞ�1
2 � � 2½AgðOHÞ�2

3 � � ½HCrO�1
4 �

�2½CrO�2
4 � � ½HCr2O

�1
7 � � 2½Cr2O

�2
7 � ¼ 0

ð62Þ

used, as previously, to formulation of the zeroing function, y = y(pH), and the set of relations

for equilibrium data specified in Table 10. From these relations, we get

½H2CrO4� ¼ 107:3�2pH � ½CrO4
�2�; ½HCrO4

�1� ¼ 106:5�pH � ½CrO4
�2�;

½HCr2O7
�1� ¼ 1014:59�3pH � ½CrO4

�2�2;
ð63Þ

½Cr2O7
�2� ¼ 1014:52�2pH � ½CrO4

�2�2 ð63aÞ

Denoting by 2c0 (< 2C0) the total concentration of dissolved Ag and Cr species formed, in a

transition stage, from Ag2Cr2O7, we can write

Reaction Equilibrium data

H2O = H+1 + OH-1 pKw = 14.0

H2CrO4 ¼ Hþ þHCrO�1
4

pK1 = 0.8

HCrO�1
4 ¼ Hþ þ CrO�2

4
pK2 = 6.5

HCr2O
�1
7 ¼ Hþ1 þ Cr2O

�2
7

logK3 = 0.07

2HCrO�1
4 ¼ Cr2O

�2
7 þH2O logK4 = 1.52

Ag+1 + OH�1 = AgOH logK1
OH = 2.3

Agþ1 þ 2OH�1 ¼ AgðOHÞ�1
2

logK2
OH = 3.6

Agþ1 þ 3OH�1 ¼ AgðOHÞ�2
3

logK3
OH = 4.8

Ag2CrO4 ¼ 2Agþ1 þ CrO�2
4

pKsp1 = 11.9

Ag2Cr2O7 ¼ 2Agþ1 þ Cr2O
�2
7

pKsp2 = 6.7

AgOH ¼ Agþ1 þOH�1 pKsp3 = 7.84

Table 10. Physicochemical equilibrium data relevant to the Ag2Cr2O7 + H2O system (pK = �logK), at “room”

temperatures.
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½Agþ1� þ ½AgOH� þ ½AgðOHÞ�1
2 � þ ½AgðOHÞ�2

3 � ¼ 2c0 ð64Þ

½H2CrO4� þ ½HCrO�1
4 � þ ½CrO�2

4 � þ 2½HCr2O
�1
7 � þ 2½Cr2O

�2
7 � ¼ 2c0 ð65Þ

From Table 10 and formulas (63)–(65) we get the relations:

ðaÞ ½Agþ1� ¼ 2c0=g0; 2g2½CrO
�2
4 �2 þ g1½CrO

�1
4 �–2c0 ¼ 0 ) ðbÞ ½CrO�2

4 � ¼
ðg21 þ 16 � c0g2Þ

0:5 � g1
4 � g2

ð66Þ

where g0 = 1 + 10
pH�11.7 + 102pH�24.4 + 103pH�37.2; g1 = 10

7.3�2pH + 106.5�pH + 1; g2 = 10
14.59�3pH +

1014.52�2pH. Applying them in Eq. (62), we get the zeroing function

y ¼ yðpHÞ ¼ 10�pH
–10pH�14 þ g3 � ½Agþ1� –g4 � ½CrO�2

4 � � g5�½CrO
�2
4 �2 ð67Þ

where g3 = 1 – 102pH�24.4
– 2∙103pH�37.2; g4 = 106.5�pH + 2; g5 = 1014.59�3pH + 2∙1014.52�2pH, and

[Ag+1] and [CrO4
�2] are defied above, as functions of pH.

The calculation procedure, realizable with use of Excel spreadsheet, is as follows. We

assume a sequence of growing numerical values for 2c0. At particular 2c0 values, we

calculate pH = pH(2c0) value zeroing the function (67), and then calculate the values of

the products: q1 = [Ag+1]2[CrO4
�2]/Ksp1 and q2 = [Ag+1]2[Cr2O7

�2]/Ksp2, where: [Ag+1],

[CrO4
�2], and [Cr2O7

�2] are presented above (Eqs. (66a), (66b) and (63a), resp.), pKsp1 =

11.9, pKsp2 = 6.7. As results from Figure 3, where logq1 and logq2 are plotted as functions

of 2c0; logq1 = 0 ⇔ q1 = 1 ⇔ [Ag+1]2[CrO4
�2] = Ksp1 at lower 2c0 value, whereas logq2 < 0 ⇔

q2 < 1 ⇔ [Ag+1]2[Cr2O7
�2] < Ksp2, both for pK2 = 6.7 and 10, cited in the literature. The x1=1

Figure 3. The convergence of logq1 and logq2 to 0 value; Ksp1 is attained at lower 2c0 value.
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value is attained at 2c0 = 3.5∙10�4
⟹ c0 = 1.75∙10�4; then Ag2CrO4 precipitates as the new

solid phase, i.e., total depletion of Ag2Cr2O7 occurs. It means that Ag2Cr2O7 is not the

equilibrium solid phase in this system. This fact was confirmed experimentally, as stated

in [42], i.e., Ag2Cr2O7 is transformed into Ag2CrO4 upon boiling with H2O; at higher

temperatures, this transformation proceeds more effectively. Concluding, the formula s* =

(Ksp2/4)
1/3 applied for Ksp2 = [Ag+1]2[Cr2O7

�2] is not “the best answer,” as stated in Ref.

[43].

The system involved with Ag2CrO4 was also considered in context with the Mohr’s method of

Cl�1 determination [44–46]. As were stated there, the systematic error in Cl�1 determining

according to this method, expressed by the difference between the equivalence (eq) volume

(Veq = C0V0/C) and the volume Vend corresponding to the end point where the Ksp1 for

Ag2CrO4 is crossed, equals to

Veq � Vend ¼
Ksp

C
�

C01V0

Ksp1

� �0:5

� ðV0 þ VendÞ
0:5 �

1

C
�

Ksp1

C01V0

� �0:5

� ðV0 þ VendÞ
1:5

where Ksp = [Ag+1][Cl�1] (pKsp = 9.75), V0 is the volume of titrant with NaCl (C0) + K2CrO4 (C01)

titrated with AgNO3 (C) solution; Vend = Veq at C01 = (1 + Vend/V0)∙Ksp1/Ksp.

All calculations presented above were realized using Excel spreadsheets. For more complex

nonequilibrium two-phase systems, the use of iterative computer programs, e.g., ones offered

by MATLAB [8, 47], is required. This way, the quasistatic course of the relevant processes under

isothermal conditions can be tested [48].

5.2. Dissolution of struvite

The fact that NH3 evolves from the system obtained after leaving pure struvite pr1 in contact

with pure water, e.g., on the stage of washing this precipitate, has already been known at the

end of nineteenth century [49]. It was noted that the system obtained after mixing magne-

sium, ammonium, and phosphate salts at the molar ratio 1:1:1 gives a system containing an

excess of ammonium species remaining in the solution and the precipitate that “was not

struvite, but was probably composed of magnesium phosphates” [50]. This effect can be explained

by the reaction [20]

3MgNH4PO4 ¼ Mg3ðPO4Þ2 þHPO�2
4 þNH3 þ 2NHþ1

4 ð68Þ

Such inferences were formulated on the basis of X-ray diffraction analysis, the crystallographic

structure of the solid phase thus obtained. It was also stated that the precipitation of struvite

requires a significant excess of ammonium species, e.g., Mg:N:P = 1:1.6:1. Struvite (pr1) is the

equilibrium solid phase only at a due excess of one or two of the precipitating reagents. This

remark is important in context with gravimetric analysis of magnesium as pyrophosphate.

Nonetheless, also in recent times, the solubility of struvite is calculated from the approximate

formula s* = (Ksp1)
1/3 based on an assumption that it is the equilibrium solid phase in such a

system.
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Struvite is not the equilibrium solid phase also when introduced into aqueous solution of CO2

(CCO2
, mol/L), modified (or not) by free strong acid HB (Ca, mol/L) or strong base MOH (Cb,

mol/L).

The case of struvite requires more detailed comments. The reaction (68) was proved theoreti-

cally [20], on the basis of simulated calculations performed by iterative computer programs,

with use of all attainable physicochemical knowledge about the system in question. For this

purpose, the fractions

q1 ¼ ½Mgþ2�½NHþ1
4 �½PO�3

4 �=Ksp1, q2 ¼ ½Mgþ2�3½PO�3
4 �2=Ksp2, q3

¼ ½Mgþ2�½HPO�2
4 �=Ksp3, q4½Mgþ2�½OH�1�2=Ksp4

ð69Þ

were calculated for: pr1 = MgNH4PO4 (pKsp1 = 12.6), pr2 = Mg3(PO4)2 (pKsp2 = 24.38), pr3 =

MgHPO4 (pKsp3 = 5.5), pr4 = Mg(OH)2 (pKsp4 = 10.74) and are presented in Figure 4, at an

initial concentration of pr1, equal C0 = [pr1]t=0 = 10�3 mol/L (pC0 = (ppr1)t=0 = 3); ppr1 = �log

[pr1]. As we see, the precipitation of pr2 (Eq. (68)) starts at ppr1 = 3.088; other solubility

products are not crossed. The changes in concentrations of some species, resulting from

dissolution of pr1, are indicated in Figure 5, where s is defined by equation [20]

s ¼ sMg ¼ ½Mgþ2� þ ½MgOHþ1� þ ½MgH2PO
þ1
4 � þ ½MgHPO4� þ ½MgPO�1

4 �

þ½MgNHþ2
3 � þ ½MgðNH3Þ

þ2
2 � þ ½MgðNH3Þ

þ2
3 �

ð70Þ

involving all soluble magnesium species are identical in its form, irrespective of the equilib-

rium solid phase(s) present in this system. Moreover, it is stated that pH in the solution equals

Figure 4. Plots of logqi versus ppr1 = �log[pr1] relationships, at (ppr1)t=0 = 3; i = 1,2,3,4 refer to pr1, pr2, pr3 and pr4,

respectively.
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ca. 9–9.5 (Figure 6); this pH can be affected by the presence of CO2 from air. Under such

conditions, NH4
+1 and NH3 occur there at comparable concentrations [NH4

+1] ≈ [NH3], but

[HPO4
�2]/[PO4

�3] = 1012.36�pH
≈ 103. This way, the scheme (10) would be more advantageous,

provided that struvite is the equilibrium solid phase; but it is not the case, see Eq. (68). The

reaction (68) occurs also in the presence of CO2 in water where struvite was introduced.

Figure 5. The speciation curves for indicated species resulting from dissolution of pr1 at (ppr1)t=0 = 3.

Figure 6. The pH versus log[pr2] relationship; pr2 = Mg3(PO4)2, at [ppr1]t=0 = 3. The numbers at the corresponding lines

indicate pCO2 ¼ �logCCO2
values; pCO2 ¼ ∞⇔ CCO2

= 0.
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After introducing struvite pr1 (at pC0 = [ppr1]t=0 = 2) into alkaline (Cb = 10
�2 mol/L KOH, pCb = 2)

solution of CO2 (pCO2 = 4), the dissolution is more complicated and proceeds in three steps, see

Figure 7.

In step 1, pr4 precipitates first, pr1 + 2OH�1 = pr4 + NH3 + HPO4
�2, nearly from the very start

of pr1 dissolution, up to ppr1 = 2.151, where Ksp2 is attained. Within step 2, the solution is

saturated toward pr2 and pr4. In this step, the reaction expressed by the notation 2pr1 + pr4 =

pr2 + 2NH3 + 2H2O occurs up to total depletion of pr4 (at ppr1 = 2.896). In this step, the

reaction 3pr1 + 2OH�1 = pr2 + 3NH3 + HPO4
�1 + 2H2O occurs up to total depletion of pr1, i.e.,

the solubility product Ksp1 for pr1 is not crossed. The curve s0 (Figure 7) is related to the

function

s0 ¼ sþ ½MgHCOþ1
3 � þ ½MgCO3� ð71Þ

where s is expressed by Eq. (70).

6. Solubility of nickel dimethylglyoximate

The precipitate of nickel dimethylglyoximate, NiL2, has soluble counterpart with the same

formula, i.e., NiL2, in aqueous media. IfNiL2 is in equilibrium with the solution, concentration

of the soluble complex NiL2 assumes constant value: [NiL2] = K2∙[Ni2+][L�]2 = K2∙Ksp, where

K2 = 1017.24, Ksp = [Ni2+][L�]2 = 10�23.66 [14, 17, 18], and then [NiL2] = 10�6.42 (i.e., log[NiL2] =

�6.42). The concentration [NiL2] is the constant, limiting component in expression for solubil-

ity s = sNi of nickel dimethylglyoximate, NiL2. Moreover, it is a predominant component in

Figure 7. The speciation curves for indicated species Xi
zi , resulting from dissolution of pr1 = MgNH4PO4, at (pC0, pCO2,

pCb) = (2, 4, 2); s0 is defined by Eq. (71).
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expression for s in alkaline media, see Figure 8. This pH range involves pH of ammonia buffer

solutions, where NiL2 is precipitated from NiSO4 solution during the gravimetric analysis of

nickel; the expression for solubility

s ¼ sNi ¼ ½Niþ2� þ ½NiOHþ1� þ ½NiSO4� þ
X6

i¼1

½NiðNH3Þi
þ2� þ ½NiL2� ð72Þ

The effect of other, e.g., citrate (Cit) and acetate (Ac) species as complexing agents can also be

considered for calculation purposes, see the lines b and c in Figure 8. The presence of citrate

does not affect significantly the solubility of NiL2 in ammonia buffer media, i.e., at pH ≈ 9,

where sNi ffi [NiL2].

Calculations of s = sNi were made at CNi = 0.001 mol/L and CL = 0.003 mol/L HL, i.e., at the

excessive HL concentration equal CL – 2CNi = 0.001 mol/L. Solubility of HL in water, equal

0.063 g HL/100 mL H2O (25oC) [51], corresponds to concentration 0.63/116.12 = 0.0054 mol/L of

the saturated HL solution, 0.003 < 0.0054. Applying higher CL values needs the HL solution in

ethanol, where HL is fairly soluble. However, the aqueous-ethanolic medium is thus formed,

where equilibrium constants are unknown. To avoid it, lower CNi and CL values were applied

in calculations. The equilibrium data were taken from Ref. [31].

The soluble complex having the formula identical to the formula of the precipitate occurs also

in other, two-phase systems. In some pH range, concentration of this soluble form is the

dominant component of the expression for the solubility s. As stated above, such a case occurs

for NiL2. Then one can assume the approximation

s ¼ K2Ksp ð73Þ

Similar relationship exists also for other precipitates. By differentiation of Eq. (73) with respect to

temperature Tat p = const, and application of van’t Hoff’s isobar equation for K2 andKsp, we obtain

Figure 8. Solubility curves for nickel dimethylglyoximate NiL2 in (a) ammonia, (b) acetate+ammonia, and (c) citrate

+acetate+ ammonia media at total concentrations [mol/L]: CNi = 0.001, CL = 0.003, CN = 0.5, CAc = 0.3, CCit = 0.1 [14].
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1

s
�

∂s

∂T

� �

p

¼
1

RT2
� ðΔGo

1 þ ΔGo
2Þ ð74Þ

where

ΔGo
1 ¼ RT2 �

∂lnKsp

∂T

� �

p
and ΔGo

2 ¼ RT2 � ∂lnK2

∂T

� �

p

Because, as a rule,

∂Ksp

∂T

� �

p
> 0 and ∂K2

∂T

� �

p
< 0

then ΔGo
1 > 0 and ΔGo

2 < 0, and Eq. (74) can be rewritten into the form

1

s
�

∂s

∂T

� �

p

¼
1

RT2
� ðjΔGo

1j � jΔGo
2jÞ ð75Þ

If jΔGo
1j ≈ jΔG

o
2 j within the temperature range (T0, T), the value of s is approximately constant.

Let T0 denote the room temperature (at which,as a rule—all the equilibrium constants are

determined) and T 6¼ T0 is the temperature at which the precipitate is filtered and washed. In

this case, the solubility s and then theoretical accuracy of gravimetric analysis does not change

with temperature.

7. Calculation of solubility in dynamic redox systems

7.1. Preliminary information

The redox system presented in this section is resolvable according to generalized approach to

redox systems (GATES), formulated by Michałowski (1992) [8]. According to GATES principles,

the algebraic balancing of any electrolytic system is based on the rules of conservation of

particular elements/cores Yg (g = 1,…, G), and on charge balance (ChB), expressing the rule of

electroneutrality of this system; the terms element and core are then distinguished. The core is a

cluster of elements with defined composition (expressed by its chemical formula) and external

charge that remains unchanged during the chemical process considered, e.g., titration. For

ordering purposes, we assume: Y1 = H, Y2 = O,…. For modeling purposes, the closed systems,

composed of condensed phases separated from its environment by diathermal (freely permeable

by heat) walls, are considered; it enables the heat exchange between the system and its environ-

ment. Any chemical process, such as titration, is carried out under isothermal conditions, in a

quasistatic manner; constant temperature is one of the conditions securing constancy of equilib-

rium constants values. An exchange of the matter (H2O, CO2, O2,…) between the system and its

environment is thus forbidden, for modeling purposes. The elemental/core balance F(Yg) for the

g-th element/core (Yg) (g = 1,…, G) is expressed by an equation interrelating the numbers of Yg-

atoms or cores in components of the systemwith the numbers of Yg-atoms/cores in the species of

the system thus formed; we have F(H) for Y1 = H, F(O) for Y2 = O, etc.
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The key role in redox systems is due to generalized electron balance (GEB) concept, discovered

by Michałowski as the Approach I (1992) and Approach II (2006) to GEB; both approaches are

equivalent:

Therefore,Approach II to GEB $ Approach I to GEB ð76Þ

GEB is fully compatible with charge balance (ChB) and concentration balances F(Yg), formu-

lated for different elements and cores. The primary form of GEB, pr-GEB, obtained according

to Approach II to GEB is the linear combination

pr�GEB ¼ 2 � FðOÞ–FðHÞ ð77Þ

Both approaches (I and II) to GEB were widely discussed in the literature [7–12, 14, 15, 17, 18,

34, 52–74], and in three other chapters in textbooks [75–79] issued in 2017 within InTech. The

GEB is perceived as a law of nature [9, 10, 17, 67, 71, 73, 74], as the hidden connection of

physicochemical laws, as a breakthrough in the theory of electrolytic redox systems. The

GATES refers to mono- and polyphase, redox, and nonredox, equilibrium and metasta-

ble [20, 21–23, 78, 79] static and dynamic systems, in aqueous, nonaqueous, and mixed-

solvent media [69, 72], and in liquid-liquid extraction systems [53]. Summarizing, Approach

II to GEB needs none prior information on oxidation numbers of all elements in components

forming a redox system and in the species in the system thus formed. The Approach I to

GEB, considered as the “short” version of GEB, is useful if all the oxidation numbers are

known beforehand; such a case is obligatory in the system considered below. The terms

“oxidant” and “reductant” are not used within both approaches. In redox systems, 2∙F(O) –

F(H) is linearly independent on CHB and F(Yg) (g ≥ 3,…, G); in nonredox systems, 2∙F(O) – F(H)

is dependent on those balances. This property distinguishes redox and nonredox systems of any

degree of complexity. Within GATES, and GATES/GEB in particular, the terms: “stoichiometry,”

“oxidation number,” “oxidant,” “reductant,” “equivalent mass” are considered as redundant,

old-fashioned terms. The term “mass action law” (MAL) was also replaced by the equilibrium

law (EL), fully compatible with the GATES principles. Within GATES, the law of charge conser-

vation and law of conservation of all elements of the system tested have adequate importance/

significance.

A detailed consideration of complex electrolytic systems requires a collection and an arrange-

ment of qualitative (particular species) and quantitative data; the latter ones are expressed by

interrelations between concentrations of the species. The interrelations consist of material

balances and a complete set of expressions for equilibrium constants. Our further consider-

ations will be referred to a titration, as a most common example of dynamic systems. The

redox and nonredox systems, of any degree of complexity, can be resolved in analogous

manner, without any simplifications done, with the possibility to apply all (prior, preselected)

physicochemical knowledge involved in equilibrium constants related to a system in question.

This way, one can simulate (imitate) the analytical prescription to any process that may be

realized under isothermal conditions, in mono- and two-phase systems, with liquid-liquid

extraction systems included.
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7.2. Solubility of CuI in a dynamic redox system

The system considered in this section is related to iodometric, indirect analysis of an acidified

(H2SO4) solution of CuSO4 [14, 64]. It is a very interesting system, both from analytical and

physicochemical viewpoints. Because the standard potential E0 = 0.621 V for (I2, I
�1) exceeds E0 =

0.153 V for (Cu+2, Cu+1), one could expect (at a first sight) the oxidation of Cu+1 by I2. However, such

a reaction does not occur, due to the formation of sparingly soluble CuI precipitate (pKsp = 11.96).

This method consists of four steps. In the preparatory step (step 1), an excess of H2SO4 is

neutralized with NH3 (step 1) until a blue color appears, which is derived from Cu(NH3)i
+2

complexes. Then the excess of CH3COOH is added (step 2), to attain a pH ca. 3.6. After

subsequent introduction of an excess of KI solution (step 3), the mixture with CuI precipitate

and dissolved iodine formed in the reactions: 2Cu+2 + 4I�1 = 2CuI + I2, 2Cu
+2 + 5I�1 = 2CuI + I3

�1

is titrated with Na2S2O3 solution (step 4), until the reduction of iodine: I2 + 2S2O3
�2 = 2I�1 +

S4O6
�2, I3

�1 + 2S2O3
�2 = 3I�1 + S4O6

�2 is completed; the reactions proceed quantitatively in

mildly acidic solutions (acetate buffer), where the thiosulfate species are in a metastable state. In

strongly acidic media, thiosulfuric acid disproportionates according to the scheme H2S2O3 =

H2SO3 + S [80].

7.3. Formulation of the system

We assume that V mL of C mol/L Na2S2O3 solution is added into the mixture obtained after

successive addition of: VN mL of NH3 (C1) (step 1), VAc mL of CH3COOH (C2) (step 2), VKI mL

of KI (C3) (step 3), and V mL of Na2S2O3 (C) (step 4) into V0 mL of titrand D composed of

CuSO4 (C0) + H2SO4 (C01). To follow the changes occurring in particular steps of this analysis,

we assume that the corresponding reagents in particular steps are added according to the

titrimetric mode, and the assumption of the volumes additivity is valid.

In this system, three electron-active elements are involved: Cu (atomic number ZCu = 29), I (ZI = 53),

S (ZS = 16). Note that sulfur in the core SO4
�2 is not involved here in electron-transfer equilibria

between S2O3
�2 and S4O6

�2; then the concentration balance for sulfate species can be consid-

ered separately.

The balances written according to Approach I to GEB, in terms of molar concentrations, are as

follows:

• Generalized electron balance (GEB)

ðZCu–2Þð½Cu
þ2� þ ½CuOHþ1� þ ½CuðOHÞ2� þ ½CuðOHÞ�1

3 � þ ½CuðOHÞ�2
4 � þ ½CuNHþ2

3 � þ ½CuðNH3Þ
þ2
2 �

þ½CuðNH3Þ
þ2
3 � þ ½CuðNH3Þ

þ2
4 � þ ½CuCH3COOþ1� þ ½CuðCH3COOÞ2�Þ þ ðZCu � 2þ ZI � 5Þ½CuIOþ1

3 �

þðZCu � 1Þð½Cuþ1� þ ½CuNHþ1
3 � þ ½CuðNH3Þ

þ1
2 �Þ þ ðZCu þ ZIÞ½CuIðsÞ� þ ðZCu þ 2ZI þ 1Þ½CuI�1

2 �

þðZI þ 1Þ½I�1� þ ð3ZI þ 1Þ½I�1
3 � þ 2ZIð½I2� þ a � ½I2ðsÞ�Þ þ ðZI � 1Þð½HIO� þ ½IO�1�Þ þ ðZI � 5Þð½HIO3� þ ½IO�1

3 �Þ

þðZI � 7Þð½H5IO6� þ ½H4IO
�1
6 � þ ½H3IO

�2
6 �Þ þ 2 � ðZS � 2Þð½H2S2O3� þ ½HS2O

�1
3 �Þ þ ½S2O

�2
3 �Þ

þ 4 � ðZS–2:5Þ½S4O
�2
6 � þ ðZCu–1þ 2 � ðZS–2ÞÞ½CuS2O

�1
3 � þ ðZCu–1þ 4 � ðZS–2ÞÞ½CuðS2O3Þ

�3
2 � þ ðZCu–1þ

6 � ðZS–2ÞÞ½CuðS2O3Þ
�5
3 � � ððZCu � 2ÞC0V0 þ ðZI þ 1ÞC3VKI þ 2 � ðZS � 2ÞCVÞ=

ðV0þVNþVAcþVKIþVÞ ¼ 0

ð78Þ
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• CHB

½Hþ1�–½OH�1� þ ½Kþ1� þ ½Na
þ1� � ½HSO4

�1� � 2½SO4
�2� þ ½NH4

þ1� � ½CH3COO�1� þ 2½Cuþ2�

þ½CuOH
þ1� � ½CuðOHÞ3

�1�–2½CuðOHÞ4
�2� þ 2½CuðNH3Þ

þ2� þ 2½CuðNH3Þ3
þ2� þ 2½CuðNH3Þ3

þ2�

þ2CuðNH3Þ4
þ2� þ ½CuCH3COOþ1� � ½I�1� � ½I3

�1�–½IO�1� � ½IO3
�1� � ½H4IO6

�1� � 2½H3IO6
�2�

þ½Cuþ1� þ ½CuNH3
þ1� þ ½CuðNH3Þ2

þ1� � ½CuI2
�1� þ ½CuIO3

þ1� � ½HS2O3
�1� � 2½S2O3

�2�

�2½S4O6
�2� � ½CuS2O3

�1� � 3½CuðS2O3Þ2
�3� � 5½CuðS2O3Þ3

�5� ¼ 0

ð79Þ

• F(Cu)

½Cuþ2� þ ½CuOHþ1� þ ½CuðOHÞ2� þ ½CuðOHÞ3
�1� þ ½CuðOHÞ4

�2� þ ½CuSO4� þ ½CuNH3
þ2�

þ½CuðNH3Þ2
þ2� þ ½CuðNH3Þ3

þ2� þ ½CuðNH3Þ4
þ2� þ ½CuCH3COOþ1� þ ½CuðCH3COOÞ2�

þ½Cuþ1� þ ½CuNH3
þ1� þ ½CuðNH3Þ2

þ1� þ ½CuI2
�1� þ ½CuIðsÞ� þ ½CuIO3

þ1� þ ½CuS2O3
�1�

þ½CuðS2O3Þ2
�3� þ ½CuðS2O3Þ3

�5�–C0V0=ðV0 þ VN þ VAc þ VKI þ VÞ ¼ 0

ð80Þ

• F(SO4)

½HSO4
�1� þ ½SO4

�2� þ ½CuSO4�–C01V0=ðV0 þ VN þ VAc þ VKI þ VÞ ¼ 0 ð81Þ

• F(NH3)

½NH4
þ1� þ ½NH3� þ ½CuNH3

þ2� þ 2½CuðNH3Þ2
þ2� þ 3½CuðNH3Þ3

þ2� þ 4½CuðNH3Þ4
þ2�

þ½CuNH3
þ1� þ 2½CuðNH3Þ2

þ1�–C1VN=ðV0 þ VN þ VAc þ VKI þ VÞ ¼ 0
ð82Þ

• F(CH3COO)

½CH3COOH� þ ½CH3COO�1� þ ½CuCH3COOþ1� þ 2½CuðCH3COOÞ2�

–C2VAc=ðV0 þ VN þ VAc þ VKI þ VÞ ¼ 0
ð83Þ

• F(K)

½Kþ1� ¼ C3VKI=ðV0 þ VN þ VAc þ VKI þ VÞ ð84Þ

• F(I)

½I�1� þ 3½I3
�1� þ 2ð½I2� þ ½I2ðsÞ�Þ þ ½HIO� þ ½IO�1� þ ½HIO3� þ ½IO3

�1� þ ½H5IO6� þ ½H4IO6
�1�

þ½H3IO6
�2� þ 2½CuI2

�1� þ ½CuIðsÞ� þ ½CuIO3
þ1�–C3VKI=ðV0 þ VN þ VAc þ VKI þ VÞ ¼ 0

ð85Þ
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• F(S)

2½H2S2O3� þ 2½HS2O3
�1� þ 2½S2O3

�2� þ 4½S4O6
�2� þ 2½CuS2O3

�1� þ 4½CuðS2O3Þ2
�3�

þ6½CuðS2O3Þ3
�5�–2CV=ðV0 þ VN þ VAc þ VKI þ VÞ ¼ 0 ) ½H2S2O3� þ ½HS2O3

�1� þ ½S2O3
�2�

þ2½S4O6
�2� þ ½CuS2O3

�1� þ 2½CuðS2O3Þ2
�3� þ 3½CuðS2O3Þ3

�5�

–CV=ðV0 þ VN þ VAc þ VKI þ VÞ ¼ 0

ð86Þ

• F(Na)

½Naþ1� ¼ 2CV=ðV0 þ VN þ VAc þ VKI þ VÞ ð87Þ

The GEB is presented here in terms of the Approach I to GEB, based on the “card game”

principle, with Cu (Eq. (80)), I (Eq. (85)) as S (Eq. (86)) as “players,” and H, O, S (Eq. (81)), C

(from Eq. (83)), N (from Eq. (82)), K, Na as “fans.” There are together 47 species involved in 2 +

6 = 8, Eqs. (78)–(83), (85), (86) and two equalities; [K+1] (Eq. (84)) and [Na+1] (Eq. (87)) are not

involved in expressions for equilibrium constants, and then are perceived as numbers (not

variables), at a particular V-value. Concentrations of the species in the equations are interre-

lated in 35 independent equilibrium constants:

½Hþ1� ¼ 10�pH, ½OH�1� ¼ 10pH�14ðpKW ¼ 14Þ, ½CuOHþ1� ¼ 107:0 � ½Cuþ2�½OH�1�, ½CuðOHÞ2�

¼ 1013:68 � ½Cuþ2�½OH�1�2,

½CuðOHÞ3
�1� ¼ 1017:0 � ½Cuþ2�½OH�1�3, ½CuðOHÞ�2

4 � ¼ 1018:5 � ½Cuþ2�½OH�1�4, ½CuNHþ2
3 �

¼ 103:39 � ½Cuþ2�½NH3�,

½CuðNH3Þ
þ2
2 � ¼ 107:33 � ½Cuþ2�½NH3�

2, ½CuðNH3Þ
2þ
3 � ¼ 1010:06 � ½Cuþ2�½NH3�

3, ½CuðNH3Þ
þ2
4 �

¼ 1012:03 � ½Cuþ2�½NH3�
4,

½CuSO4� ¼ 102:36 � ½Cuþ2�½SO�2
4 �, ½NHþ1

4 � ¼ 109:35 � ½Hþ1�½NH3�, ½HSO�1
4 � ¼ 101:8 � ½Hþ1�½SO�2

4 �,

½CH3COOH� ¼ 104:65 � ½Hþ1�½CH3COO�1�, ½Cuþ1�½I�1� ¼ 10�11:96ðsolubitlity product for CuIÞ,

½CuI�1
2 � ¼ 108:85 � ½Cuþ1�½I�1�2, ½CuIOþ1

3 � ¼ 100:82 � ½Cuþ2�½IO�1
3 �, ½CuCH3COOþ1�

¼ 102:24 � ½Cuþ2�½CH3COO�1�,

½CuðCH3COOÞ2� ¼ 103:30 � ½Cuþ2�½CH3COO�1�2, ½HS2O
�1
3 � ¼ 101:72 � ½Hþ1�½S2O

�2
3 �, ½H2S2O3�

¼ 102:32 � ½Hþ1�2½S2O
�2
3 �,

½CuS2O
�1
3 � ¼ 103:30 � ½Cuþ1�½S2O

�2
3 �, ½CuðS2O3Þ

�3
2 � ¼ 1012:2 � ½Cuþ1�½S2O

�2
3 �2, ½CuðS2O3Þ

�5
3 �

¼ 1013:8 � ½Cuþ1�½S2O
�2
3 �3

Applying A = 16.92 [16], we have

Descriptive Inorganic Chemistry Researches of Metal Compounds122



½Cuþ2� ¼ ½Cuþ1� � 10AðE�0:153Þ; ½I2� ¼ ½I�1�2 � 102AðE–0:621Þ, s ¼ 1:33 � 10�3 mol=Lðsolubility of I2ðsÞÞ,

½I�1
3 � ¼ ½I�1�3 � 102AðE–0:545Þ, ½IO�1� ¼ ½I�� � 102AðE–0:49Þþ2pH–28, ½HIO� ¼ 1010:6 � ½Hþ1�½IO�1�, ½IO�1

3 �

¼ ½I�1� � 106AðE–1:08Þþ6pH,

½HIO3� ¼ 100:79 � ½Hþ1�½IO�1
3 �, ½H5IO6� ¼ ½I�1� � 108AðE–1:24Þþ7pH, ½H4IO

�1
6 �

¼ ½H5IO6� � 10
�3:3þpH, ½H3IO

�2
6 � ¼ ½I�1� � 108AðE–0:37Þþ9pH–126:

In the calculations made in this system according to the computer programs attached to Ref.

[64], it was assumed that V0 = 100, C0 = 0.01, C01 = 0.01, C1 = 0.25, C2 = 0.75, C3 = 2.0, C4 = C = 0.1;

VN = 20, VAc = 40, VK = 20. At each stage, the variable V is considered as a volume of the

solution added, consecutively: NH3, CH3COOH, KI, and Na2S2O3, although the true/factual

titrant in this method is the Na2S2O3 solution, added in stage 4.

The solubility s [mol/L] of CuI in this system (Figures 8a and b) is put in context with the

speciation diagrams presented in Figure 9. This precipitate appears in the initial part of

titration with KI (C3) solution (Figure 8a) and further it accompanies the titration, also in stage

4 (Figure 8b). Within stage 3, at V ≥ C0V0/C3, we have

s ¼ s3 ¼ ½Cuþ2� þ
X4

i¼1

½CuðOHÞþ2�i

i � þ
X4

i¼1

½CuðNH3Þ
þ2
i � þ ½CuSO4� þ ½CuIOþ1

3 �

þ
X2

i¼1

½CuðCH3COOÞþ2�i

i � þ ½Cuþ1� þ ½CuI2
�1� þ

X2

i¼1

½CuðNH3Þ
þ1
i �

ð88Þ

and in stage 4

s ¼ s4 ¼ s3 þ
X3

i¼1

½CuðS2O3Þ
þ1�2i
i � ð89Þ

The small concentration of Cu+1 (Figure 9, stage 3) occurs at a relatively high total concen-

tration of Cu+2 species, determining the potential ca. 0.53–0.58 V, [Cu+2]/[Cu+1] = 10A(E – 0.153),

see Figure 10a. Therefore, the concentration of Cu+2 species determine a relatively high

solubility s in the initial part of stage 3. The decrease in the s value in further parts of stage

3 is continued in stage 4, at V < Veq = C0V0/C = 0.01∙100/0.1 = 10 mL. Next, a growth in the

solubility s4 at V > Veq is involved with formation of thiosulfate complexes, mainly CuS2O3
�1

(Figure 9, stage 4). The species I3
�1 and I2 are consumed during the titration in stage 4

(Figure 9d). A sharp drop of E value at Veq = 10 mL (Figure 10b) corresponds to the fraction

titrated Φeq = 1.

The course of the E versus V relationship within the stage 3 is worth mentioning (Figure 10a).

The corresponding curve initially decreases and reaches a “sharp” minimum at the point

corresponding to crossing the solubility product for CuI. Precipitation of CuI starts after
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addition of 0.795 mL of 2.0 mol/L KI (Figure 11a). Subsequently, the curve in Figure 10a

increases, reaches a maximum and then decreases. At a due excess of the KI (C3) added on

the stage 3 (VK = 20 mL), solid iodine (I2(s), of solubility 0.00133 mol/L at 25oC) is not

precipitated.
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Figure 10. Plots of E versus V for (a) stage 3 and (b) stage 4.

Figure 9. The speciation plots for indicated Cu-species within the successive stages. The V-values on the abscissas

correspond to successive addition of V mL of: 0.25 mol/L NH3 (stage 1); 0.75 mol/L CH3COOH (stage 2); 2.0 mol/L KI

(stage 3); and 0.1 mol/L Na2S2O3 (stage 4). For more details see text.
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8. Final comments

The solubility and dissolution of sparingly soluble salts in aqueous media are among the main

educational topics realized within general chemistry and analytical chemistry courses. The

principles of solubility calculations were formulated at a time when knowledge of the two-

phase electrolytic systems was still rudimentary. However, the earlier arrangements persisted

in subsequent generations [81], and little has changed in the meantime [82]. About 20 years

ago, Hawkes put in the title of his article [83] a dramatic question, corresponding to his

statement presented therein that “the simple algorithms in introductory texts usually produce

dramatic and often catastrophic errors”; it is hard not to agree with this opinion.

In the meantime, Meites et al. [84] stated that “It would be better to confine illustrations of the

solubility product principle to 1:1 salts, like silver bromide (…), in which the (…) calculations

will yield results close enough to the truth.” The unwarranted simplifications cause confusion

in teaching of chemistry. Students will trust us enough to believe that a calculation we have

taught must be generally useful.

The theory of electrolytic systems, perceived as the main problem in the physicochemical

studies for many decades, is now put on the side. It can be argued that the gaining of

quantitative chemical knowledge in the education process is essentially based on the stoichi-

ometry and proportions.

Overview of the literature indicates that the problems of dissolution and solubility calculation

are not usually resolved in a proper manner; positive (and sole) exceptions are the studies and

practice made by the authors of this chapter. Other authors, e.g., [13, 85], rely on the simplified

schemes (ready-to-use formulas), which usually lead to erroneous results, expressed by disso-

lution denoted as s* [mol/L]; the values for s* are based on stoichiometric reaction notations

and expressions for the solubility product values, specified by Eqs. (1) and (2). The calculation
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Figure 11. Solubility s of CuI within stage 3 (a) and stage 4 (b).
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of s* contradicts the common sense principle; this was clearly stated in the example with

Fe(OH)3 precipitate. Equation (27) was applied to struvite [50] and dolomite [86], although

these precipitates are nonequilibrium solid phases when introduced into pure water, as were

proved in Refs. [20–23]. The fact of the struvite instability was known at the end of nineteenth

century [49]; nevertheless, the formula s* = (Ksp)
1/3 for struvite may be still encountered in

almost all textbooks and learning materials; this problem was raised in Ref. [15]. In this

chapter, we identified typical errors involved with s* calculations, and indicated the proper

manner of resolution of the problem in question.

The calculations of solubility s*, based on stoichiometric notation and Eq. (3), contradict the

calculations of s, based on the matter and charge preservation. In calculations of s, all the

species formed by defined element are involved, not only the species from the related reaction

notation. A simple zeroing method, based on charge balance equation, can be applied for the

calculation of pH = pH0 value, and then for calculation of concentrations for all species

involved in expression for solubility value.

The solubility of a precipitate and the pH-interval where it exists as an equilibrium-solid phase

in two-phase system can be accurately determined from calculations based on charge and

concentration balances, and complete set of equilibrium constant values referred to the system

in question.

In the calculations performed here we assumed a priori that the Ksp values in the relevant tables

were obtained in a manner worthy of the recognition, i.e., these values are true. However, one

should be aware that the equilibrium constants collected in the relevant tables come from the

period of time covering many decades; it results from an overview of dates of references

contained in some textbooks [31, 85] relating to the equilibrium constants. In the early literature

were generally presented the results obtained in the simplest manner, based on Ksp calculation

from the experimentally determined s* value, where all soluble species formed in solution by

these ions were included on account of simple cations and anions forming the expression for Ksp.

In many instances, the Ksp
* values should be then perceived as conditional equilibrium con-

stants [87]. Moreover, the differences between the equilibrium constants obtained under different

physicochemical conditions in the solution tested were credited on account of activity coeffi-

cients, as an antidote to any discrepancies between theory and experiment.

First dissociation constants for acids were published in 1889. Most of the stability constants of

metal complexes were determined after the announcement 1941 of Bjerrum’s works, see Ref.

[88], about ammine-complexes of metals, and research studies on metal complexes were

carried out intermittently in the twentieth century [89]. The studies of complexes formed by

simple ions started only from the 1940s; these studies were related both to mono- and two-

phase systems. It should also be noted that the first mathematical models used for determina-

tion of equilibrium constants were adapted to the current computing capabilities. Critical

comments in this regard can be found, among others, in the Beck [90] monograph; the varia-

tion between the values obtained by different authors for some equilibrium constants was

startling, and reaching 20 orders of magnitude. It should be noted, however, that the determi-

nation of a set of stability constants of complexes as parameters of a set of suitable algebraic

equations requires complex mathematical models, solvable only with use of an iterative com-

puter program [91–93].
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The difficulties associated with the resolution of electrolytic systems and two-phase systems, in

particular, can be perceived today in the context of calculations using (1o) spreadsheets (2o)

iterative calculation methods. In (1o), a calculation is made by the zeroing method applied to

the function with one variable; both options are presented in this chapter.

The expression for solubility products, as well as the expression of other equilibrium constants,

is formulated on the basis of mass action law (MAL). It should be noted, however, that the

underlying mathematical formalism contained in MAL does not inspire trust, to put it mildly.

For this purpose, the equilibrium law (EL) based on the Gibbs function [94] and the Lagrange

multipliers method [95–97] with laws of charge and elements conservation was suggested

lately by Michałowski.

From semantic viewpoint, the term “solubility product” is not adequate, e.g., in relation to

Eq. (8). Moreover, Ksp is not necessarily the product of ion concentrations, as indicated in

formulas (4), (5), and (11). In some (numerous) instances of sparingly soluble species, e.g.,

sulfur, solid iodine, 8-hydroxyquinoline, dimethylglyoxime, the term solubility product is not

applied. In some instances, e.g., for MnO2, this term is doubtful.

One of the main purposes of the present chapter is to familiarize GEB within GATES as

GATES/GEB to a wider community of analysts engaged in electrolytic systems, also in aspect

of solubility problems.

In this context, owing to large advantages and versatile capabilities offered by GATES/GEB, it

deserves a due attention and promotion. The GATES is perceived as a step toward reduction-

ism [19, 71] of chemistry in the area of electrolytic systems and the GEB is considered as a

general law of nature; it provides the real proof of the world harmony, harmony of nature.
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