211 research outputs found

    The endoribonucleolytic N-terminal half of Escherichia coli RNase E is evolutionarily conserved in Synechocystis sp. and other bacteria but not the C-terminal half, which is sufficient for degradosome assembly

    Get PDF
    Escherichia coli RNase E, an essential single-stranded specific endoribonuclease, is required for both ribosomal RNA processing and the rapid degradation of mRNA. The availability of the complete sequences of a number of bacterial genomes prompted us to assess the evolutionarily conservation of bacterial RNase E. We show here that the sequence of the N-terminal endoribonucleolytic domain of RNase E is evolutionarily conserved in Synechocystis sp. and other bacteria. Furthermore, we demonstrate that the Synechocystis sp. homologue binds RNase E substrates and cleaves them at the same position as the E. coli enzyme. Taken together these results suggest that RNase E-mediated mechanisms of RNA decay are not confined to E. coli and its close relatives. We also show that the C-terminal half of E. coli RNase E is both sufficient and necessary for its physical interaction with the 3'-5' exoribonuclease polynucleotide phosphorylase, the RhlB helicase, and the glycolytic enzyme enolase, which are components of a "degradosome" complex. Interestingly, however, the sequence of the C-terminal half of E. coli RNase E is not highly conserved evolutionarily, suggesting diversity of RNase E interactions with other RNA decay components in different organisms. This notion is supported by our finding that the Synechocystis sp. RNase E homologue does not function as a platform for assembly of E. coli degradosome components

    Composition and conservation of the mRNA-degrading machinery in bacteria

    Get PDF
    RNA synthesis and decay counteract each other and therefore inversely regulate gene expression in pro- and eukaryotic cells by controlling the steady-state level of individual transcripts. Genetic and biochemical data together with recent in depth annotation of bacterial genomes indicate that many components of the bacterial RNA decay machinery are evolutionarily conserved and that their functional analogues exist in organisms belonging to all kingdoms of life. Here we briefly review biological functions of essential enzymes, their evolutionary conservation and multienzyme complexes that are involved in mRNA decay in Escherichia coli and discuss their conservation in evolutionarily distant bacteria.Ikerbask

    Survival of <i>Escherichia coli</i> under Nutrient-Deprived Conditions: Effect on Cell Envelope Subproteome

    Get PDF
    In the aquatic ecosystems, microorganisms are exposed to seasonal and circadian cycles. Abiotic factors (e.g. low temperature, nutrient deprivation) can cause morphological and physiological changes in bacteria, thereby facilitating cell survival. While representing the interface between the cells and external environment, the cell envelope plays a major role in bacterial response to stress and characterization of the changes it undergoes can help to understand the adaptation process. In this study, analysis of the morphological and physiological changes as well as variations in protein composition of the Escherichia coli cell envelope was carried out for populations maintained for 21 days under nutrient deprivation and suboptimal temperatures (4°C and 20°C). It was found that the absence of nutrients led to a temperature-dependent reduction of cell culturability but had no effect on cell viability and integrity. The concentration of membrane proteins playing the key roles in cellular transport, maintenance of cell structure or bioenergetics processes remained mainly unchanged. In contrast, the level of several proteins such as the elongation factor EFTu 1, components of Bam complex or proteins implicated in chemotaxis was altered, thus indicating that cells were readily responding and adapting to stress

    Both RNase E and RNase III control the stability of sodB mRNA upon translational inhibition by the small regulatory RNA RyhB

    Get PDF
    Previous work has demonstrated that iron-dependent variations in the steady-state concentration and translatability of sodB mRNA are modulated by the small regulatory RNA RyhB, the RNA chaperone Hfq and RNase E. In agreement with the proposed role of RNase E, we found that the decay of sodB mRNA is retarded upon inactivation of RNase E in vivo, and that the enzyme cleaves within the sodB 5′-untranslated region (5′-UTR) in vitro, thereby removing the 5′ stem–loop structure that facilitates Hfq and ribosome binding. Moreover, RNase E cleavage can also occur at a cryptic site that becomes available upon sodB 5′-UTR/RyhB base pairing. We show that while playing an important role in facilitating the interaction of RyhB with sodB mRNA, Hfq is not tightly retained by the RyhB–sodB mRNA complex and can be released from it through interaction with other RNAs added in trans. Unlike turnover of sodB mRNA, RyhB decay in vivo is mainly dependent on RNase III, and its cleavage by RNase III in vitro is facilitated upon base pairing with the sodB 5′-UTR. These data are discussed in terms of a model, which accounts for the observed roles of RNase E and RNase III in sodB mRNA turnover

    Combined Transcriptomic and Proteomic Profiling of E. coli under Microaerobic versus Aerobic Conditions: The Multifaceted Roles of Noncoding Small RNAs and Oxygen-Dependent Sensing in Global Gene Expression Control

    Get PDF
    Adaptive mechanisms that facilitate intestinal colonization by the human microbiota, including Escherichia coli, may be better understood by analyzing the physiology and gene expression of bacteria in low-oxygen environments. We used high-throughput transcriptomics and proteomics to compare the expression profiles of E. coli grown under aerobic versus microaerobic conditions. Clustering of high-abundance transcripts under microaerobiosis highlighted genes controlling acid-stress adaptation (gadAXW, gadAB, hdeAB-yhiD and hdeD operons), cell adhesion/biofilm formation (pgaABCD and csgDEFG operons), electron transport (cydAB), oligopeptide transport (oppABCDF), and anaerobic respiration/fermentation (hyaABCDEF and hycABCDEFGHI operons). In contrast, downregulated genes were involved in iron transport (fhuABCD, feoABC and fepA-entD operons), iron-sulfur cluster assembly (iscRSUA and sufABCDSE operons), aerobic respiration (sdhDAB and sucABCDSE operons), and de novo nucleotide synthesis (nrdHIEF). Additionally, quantitative proteomics showed that the products (proteins) of these high- or low-abundance transcripts were expressed consistently. Our findings highlight interrelationships among energy production, carbon metabolism, and iron homeostasis. Moreover, we have identified and validated a subset of differentially expressed noncoding small RNAs (i.e., CsrC, RyhB, RprA and GcvB), and we discuss their regulatory functions during microaerobic growth. Collectively, we reveal key changes in gene expression at the transcriptional and post-transcriptional levels that sustain E. coli growth when oxygen levels are low.Ministry of Science and Technology, Taiwan: 104-2311-B-001-011-MY3, and 107-2311-B-001-029-MY3; Academia Sinica: AS 2323, and AS-IA-110-L0

    The Effect of Visible Light on Cell Envelope Subproteome during Vibrio harveyi Survival at 20 °C in Seawater

    Get PDF
    A number of Vibrio spp. belong to the well-studied model organisms used to understand the strategies developed by marine bacteria to cope with adverse conditions (starvation, suboptimal temperature, solar radiation, etc.) in their natural environments. Temperature and nutrient availability are considered to be the key factors that influence Vibrio harveyi physiology, morphology, and persistence in aquatic systems. In contrast to the well-studied effects of temperature and starvation on Vibrio survival, little is known about the impact of visible light able to cause photooxidative stress. Here we employ V. harveyi ATCC 14126T as a model organism to analyze and compare the survival patterns and changes in the protein composition of its cell envelope during the long-term permanence of this bacterium in seawater microcosm at 20 °C in the presence and absence of illumination with visible light. We found that V. harveyi exposure to visible light reduces cell culturability likely inducing the entry into the Viable but Non Culturable state (VBNC), whereas populations maintained in darkness remained culturable for at least 21 days. Despite these differences, the starved cells in both populations underwent morphological changes by reducing their size. Moreover, further proteomic analysis revealed a number of changes in the composition of cell envelope potentially accountable for the different adaptation pattern manifested in the absence and presence of visible light.This work was supported by the Spanish Ministry of Economy and competitiveness (CGL2015-70929-R), the University of the Basque Country (Spain) (projects GIU14/22 and GIU17/041 and pre-doctoral grant BFI-2011-85 to C. Parada), and the Basque Foundation for Science, Ikerbasque (Spain)

    Assessing pH-dependent activities of virulence factors secreted by Candida albicans

    Get PDF
    Candida albicans is an opportunistic pathogen that can thrive under adverse conditions including suboptimal pH, nutrient scarcity, and low levels of oxygen. Its pathogenicity is associated with the production of virulence factors such as extracellular hydrolytic enzymes and toxins. This study was aimed at determining the effect of external pH, substrate nature, and strain origin on protease, lipase, and hemolysin production. To achieve this objective, agar plate assays were performed at pH 5.0, 6.5, and 7.5 with substrates suitable for the detection of each family of enzymes. Moreover, the study was conducted with 20 clinical C. albicans isolates from blood, oral cavity, skin, urine, and vagina. The hydrolytic zones formed around the colonies were further measured to calculate the Ez (enzymatic zone) indexes. We found that detection of proteases in skim milk agar plates was possible for most isolates only at pH 5 (80%) and pH 6.5 (75%), whereas BSA plates could confer protease detection exclusively at pH 5 (80%). Similarly, the percentage of isolates possessing lipolytic activities was higher at pH 5 (90%) than at pH 6.5 (70%) and pH 7.5 (35%). In contrast, hemolytic activities were detected in all isolates at pH 6.5 and 7.5 but not at pH 5. Further analysis revealed that some differences in the detected activities could potentially be attributed to the anatomical origin of these isolates. Collectively, these findings suggest that the pH of the site of infection might be critical for mimicking the microenvironment employed to experimentally discover the key virulence factors.The work was supported by IKERBASQUE (Basque Foundation for Science). Elena Eraso, Elena Sevillano, and Guillermo Quindós have received grant support from Consejería de Educación, Universidades e Investigación del Gobierno Vasco (GIC15/78 IT-990-16/IT1607-22), Spanish Ministry of Science and Innovation (PID2020-117983RB-I00), and UPV/EHU (COLAB19/11)

    Adjacent single-stranded regions mediate processing of tRNA precursors by RNase E direct entry

    Get PDF
    The RNase E family is renowned for being central to the processing and decay of all types of RNA in many species of bacteria, as well as providing the first examples of endonucleases that can recognize 50 -monophosphorylated ends thereby increasing the efficiency of cleavage. However, there is increasing evidence that some transcripts can be cleaved efficiently by Escherichia coli RNase E via direct entry, i.e. in the absence of the recognition of a 50 -monophosphorylated end. Here, we provide biochemical evidence that direct entry is central to the processing of transfer RNA (tRNA) in E. coli, one of the core functions of RNase E, and show that it is mediated by specific unpaired regions that are adjacent, but not contiguous to segments cleaved by RNase E. In addition, we find that direct entry at a site on the 50 side of a tRNA precursor triggers a series of 50 -monophosphate-dependent cleavages. Consistent with a major role for direct entry in tRNA processing, we provide additional evidence that a 50 -monophosphate is not required to activate the catalysis step in cleavage. Other examples of tRNA precursors processed via direct entry are also provided. Thus, it appears increasingly that direct entry by RNase E has a major role in bacterial RNA metabolism

    Analysis of laccase-like enzymes secreted by fungi isolated from a cave in northern Spain

    Get PDF
    [EN] Laccases belong to a family of multicopper enzymes able to oxidize a broad spectrum of organic compounds. Despite the well-known property of laccases to carry out bleaching and degradation of industrial dyes and polyphenolic compounds, their industrial use is often limited by the high cost, low efficiency, or instability of these enzymes. To look for new microorganisms which produce laccases that are potentially suitable for industrial applications, we have isolated several fungal strains from a cave in northern Spain. Their phenotypic analysis on agar plates supplemented with ABTS (2,2 '-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) disclosed two laccase-positive strains. Further genotyping revealed that they belonged to the Gliomastix murorum and Conidiobolus thromboides species. The secretion of G. murorum and C. thromboides laccase-like enzymes was then confirmed by zymography. Further identification of these polypeptides by mass-spectroscopy revealed the nature of the laccases and made it possible to predict their functional domains and other features. In addition, plate assays revealed that the laccases secreted by both G. murorum and C. thromboides were capable of degrading industrial dyes (Congo Red, Indigo, and Eriochrome Black T). Homology modeling and substrate docking predicted the putative structure of the currently uncrystallized G. murorum enzyme as well as its amino acid residues potentially involved in interactions with these dyes. In summary, new biochemical and structural insights into decolorization mediated by G. murorum laccase as well as identification of laccase-like oxidase in C. thromboides point to a promising future for these enzymes in biotechnology.AIOTEK, Grant/Award Number: SPE12UN84; Basque Foundation for Science; Basque Government, Grant/Award Number: PRE-2013-1-90
    corecore