261 research outputs found

    Targeting HER proteins in cancer therapy and the role of the non-target HER3

    Get PDF
    Members of the human epidermal growth factor receptor (HER) family have been of considerable interest in the cancer arena due to their potential to induce tumorigenesis when their signalling functions are deregulated. The constitutive activation of these proteins is seen in a number of different common cancer subtypes, and in particular EGFR and HER2 have become highly pursued targets for anti-cancer drug development. Clinical studies in a number of different cancers known to be driven by EGFR or HER2 show mixed results, and further mechanistic understanding of drug sensitivity and resistance is needed to realise the full potential of this treatment modality. Signalling in trans is a key feature of HER family signalling, and the activation of the PI3K/Akt pathway, so critically important in tumorigenesis, is driven predominantly through phosphorylation in trans of the kinase inactive member HER3. An increasing body of evidence shows that HER3 plays a critical role in EGFR- and HER2-driven tumours. In particular, HER3 lies upstream of a critically important tumorigenic signalling pathway with extensive ability for feedback and cross-talk signalling, and targeting approaches that fail to account for this important trans-target of EGFR and HER2 can be undermined by its resiliency and resourcefulness. Since HER3 is kinase inactive, it is not a direct target of kinase inhibitors and not presently an easily drugable target. This review presents the current evidence highlighting the role of HER3 in tumorigenesis and its role in mediating resistance to inhibitors of EGFR and HER2

    Identifying important breast cancer control strategies in Asia, Latin America and the Middle East/North Africa

    Get PDF
    Background: Breast cancer is the most frequent cause of cancer death in women worldwide, but global disparities in breast cancer control persist, due to a lack of a comprehensive breast cancer control strategy in many countries. Objectives: To identify and compare the need for breast cancer control strategies in Asia, Latin America and the Middle East/North Africa and to develop a common framework to guide the development of national breast cancer control strategies. Methods: Data were derived from open-ended, semi-structured interviews conducted in 2007 with 221 clinicians, policy makers, and patient advocates; stratified across Asia (n = 97), Latin America (n = 46), the Middle East/North Africa (ME/NA) (n = 39) and Australia and Canada (n = 39). Respondents were identified using purposive and snowballing sampling. Interpretation of the data utilized interpretive phenomenological analysis where transcripts and field notes were coded and analyzed and common themes were identified. Analysis of regional variation was conducted based on the frequency of discussion and the writing of the manuscript followed the RATS guidelines. Results: Analysis revealed four major themes that form the foundation for developing national breast cancer control strategies: 1) building capacity; 2) developing evidence; 3) removing barriers; and 4) promoting advocacy - each specified across five sub-ordinate dimensions. The propensity to discuss most dimensions was similar across regions, but managing advocacy was discussed more frequently (p = 0.004) and organized advocacy was discussed less frequently (p \u3c 0.001) in Australia and Canada. Conclusions: This unique research identified common themes for the development of breast cancer control strategies, grounded in the experience of local practitioners, policy makers and advocacy leaders across diverse regions. Future research should be aimed at gathering a wider array of experiences, including those of patients

    Nanoparticle Induced Cell Magneto-Rotation: Monitoring Morphology, Stress and Drug Sensitivity of a Suspended Single Cancer Cell

    Get PDF
    Single cell analysis has allowed critical discoveries in drug testing, immunobiology and stem cell research. In addition, a change from two to three dimensional growth conditions radically affects cell behavior. This already resulted in new observations on gene expression and communication networks and in better predictions of cell responses to their environment. However, it is still difficult to study the size and shape of single cells that are freely suspended, where morphological changes are highly significant. Described here is a new method for quantitative real time monitoring of cell size and morphology, on single live suspended cancer cells, unconfined in three dimensions. The precision is comparable to that of the best optical microscopes, but, in contrast, there is no need for confining the cell to the imaging plane. The here first introduced cell magnetorotation (CM) method is made possible by nanoparticle induced cell magnetization. By using a rotating magnetic field, the magnetically labeled cell is actively rotated, and the rotational period is measured in real-time. A change in morphology induces a change in the rotational period of the suspended cell (e.g. when the cell gets bigger it rotates slower). The ability to monitor, in real time, cell swelling or death, at the single cell level, is demonstrated. This method could thus be used for multiplexed real time single cell morphology analysis, with implications for drug testing, drug discovery, genomics and three-dimensional culturing

    Expression of Transient Receptor Potential Ankyrin 1 (TRPA1) and Its Role in Insulin Release from Rat Pancreatic Beta Cells

    Get PDF
    <div><h3>Objective</h3><p>Several transient receptor potential (TRP) channels are expressed in pancreatic beta cells and have been proposed to be involved in insulin secretion. However, the endogenous ligands for these channels are far from clear. Here, we demonstrate the expression of the transient receptor potential ankyrin 1 (TRPA1) ion channel in the pancreatic beta cells and its role in insulin release. TRPA1 is an attractive candidate for inducing insulin release because it is calcium permeable and is activated by molecules that are produced during oxidative glycolysis.</p> <h3>Methods</h3><p>Immunohistochemistry, RT-PCR, and Western blot techniques were used to determine the expression of TRPA1 channel. Ca<sup>2+</sup> fluorescence imaging and electrophysiology (voltage- and current-clamp) techniques were used to study the channel properties. TRPA1-mediated insulin release was determined using ELISA.</p> <h3>Results</h3><p>TRPA1 is abundantly expressed in a rat pancreatic beta cell line and freshly isolated rat pancreatic beta cells, but not in pancreatic alpha cells. Activation of TRPA1 by allyl isothiocyanate (AITC), hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), 4-hydroxynonenal (4-HNE), and cyclopentenone prostaglandins (PGJ<sub>2</sub>) and a novel agonist methylglyoxal (MG) induces membrane current, depolarization, and Ca<sup>2+</sup> influx leading to generation of action potentials in a pancreatic beta cell line and primary cultured pancreatic beta cells. Activation of TRPA1 by agonists stimulates insulin release in pancreatic beta cells that can be inhibited by TRPA1 antagonists such as HC030031 or AP-18 and by RNA interference. TRPA1-mediated insulin release is also observed in conditions of voltage-gated Na<sup>+</sup> and Ca<sup>2+</sup> channel blockade as well as ATP sensitive potassium (K<sub>ATP</sub>) channel activation.</p> <h3>Conclusions</h3><p>We propose that endogenous and exogenous ligands of TRPA1 cause Ca<sup>2+</sup> influx and induce basal insulin release and that TRPA1-mediated depolarization acts synergistically with K<sub>ATP</sub> channel blockade to facilitate insulin release.</p> </div

    Deqi sensations without cutaneous sensory input: results of an RCT

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Deqi is defined in relation to acupuncture needling as a sensory perception of varying character. In a recently published sham laser validation study, we found that subjects in the verum and the sham laser group experienced deqi sensations. Therefore, we aim to further analyze whether the perceptions reported in the two study arms were distinguishable and whether expectancy effects exhibited considerable impact on our results.</p> <p>Methods</p> <p>A detailed re-analysis focusing on deqi sensations was performed from data collected in a previously published placebo-controlled, double-blind, clinical cross-over trial for a sham laser evaluation. Thirty-four healthy volunteers (28 ± 10.7 years; 16 women, 18 men) received two laser acupuncture treatments at three acupuncture points LI4 (hégu), LU7 (liéque), and LR3 (táichong); once by verum laser and once using a sham device containing an inactive laser in randomized order. Outcome measures were frequency, intensity (evaluated by visual analogue scale; VAS), and quality of the subjects' sensations perceived during treatments (assessed with the "acupuncture sensation scale").</p> <p>Results</p> <p>Both, verum and the sham laser acupuncture result in similar deqi sensations with regard to frequency (p-value = 0.67), intensity (p-value = 0.71) and quality (p-values between 0.15 - 0.98). In both groups the most frequently used adjectives to describe these perceptions were "spreading", "radiating", "tingling", "tugging", "pulsing", "warm", "dull", and "electric". Sensations reported were consistent with the perception of deqi as previously defined in literature. Subjects' conviction regarding the effectiveness of laser acupuncture or the history of having received acupuncture treatments before did not correlate with the frequency or intensity of sensations reported.</p> <p>Conclusions</p> <p>Since deqi sensations, described as sensory perceptions, were elicited without any cutaneous sensory input, we assume that they are a product of non-specific effects from the overall treatment procedure. Expectancy-effects due to previous acupuncture experience and belief in laser acupuncture do not seem to play a major role in elicitation of deqi sensations. Our results give hints that deqi might be a central phenomenon of awareness and consciousness, and that its relevance should be taken into account, even in clinical trials. However, further research is required to understand mechanisms underlying deqi.</p

    Injectable Materials for the Treatment of Myocardial Infarction and Heart Failure: The Promise of Decellularized Matrices

    Get PDF
    Cardiovascular disease continues to be the leading cause of death, suggesting that new therapies are needed to treat the progression of heart failure post-myocardial infarction. As cardiac tissue has a limited ability to regenerate itself, experimental biomaterial therapies have focused on the replacement of necrotic cardiomyocytes and repair of the damaged extracellular matrix. While acellular and cellular cardiac patches are applied surgically to the epicardial surface of the heart, injectable materials offer the prospective advantage of minimally invasive delivery directly into the myocardium to either replace the damaged extracellular matrix or to act as a scaffold for cell delivery. Cardiac-specific decellularized matrices offer the further advantage of being biomimetic of the native biochemical and structural matrix composition, as well as the potential to be autologous therapies. This review will focus on the requirements of an ideal scaffold for catheter-based delivery as well as highlight the promise of decellularized matrices as injectable materials for cardiac repair

    Time-course of exercise and its association with 12-month bone changes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Exercise has been shown to have positive effects on bone density and strength. However, knowledge of the time-course of exercise and bone changes is scarce due to lack of methods to quantify and qualify daily physical activity in long-term. The aim was to evaluate the association between exercise intensity at 3, 6 and 12 month intervals and 12-month changes in upper femur areal bone mineral density (aBMD) and mid-femur geometry in healthy premenopausal women.</p> <p>Methods</p> <p>Physical activity was continuously assessed with a waist-worn accelerometer in 35 healthy women (35-40 years) participating in progressive high-impact training. To describe exercise intensity, individual average daily numbers of impacts were calculated at five acceleration levels (range 0.3-9.2 <it>g</it>) during time intervals of 0-3, 0-6, and 0-12 months. Proximal femur aBMD was measured with dual x-ray absorptiometry and mid-femur geometry was evaluated with quantitative computed tomography at the baseline and after 12 months. Physical activity data were correlated with yearly changes in bone density and geometry, and adjusted for confounding factors and impacts at later months of the trial using multivariate analysis.</p> <p>Results</p> <p>Femoral neck aBMD changes were significantly correlated with 6 and 12 months' impact activity at high intensity levels (> 3.9 <it>g</it>, <it>r </it>being up to 0.42). Trochanteric aBMD changes were associated even with first three months of exercise exceeding 1.1 <it>g </it>(<it>r </it>= 0.39-0.59, <it>p </it>< 0.05). Similarly, mid-femoral cortical bone geometry changes were related to even first three months' activity (<it>r </it>= 0.38-0.52, <it>p </it>< 0.05). In multivariate analysis, 0-3 months' activity did not correlate with bone change at any site after adjusting for impacts at later months. Instead, 0-6 months' impacts were significant correlates of 12-month changes in femoral neck and trochanter aBMD, mid-femur bone circumference and cortical bone attenuation even after adjustment. No significant correlations were found at the proximal or distal tibia.</p> <p>Conclusion</p> <p>The number of high acceleration impacts during 6 months of training was positively associated with 12-month bone changes at the femoral neck, trochanter and mid-femur. These results can be utilized when designing feasible training programs to prevent bone loss in premenopausal women.</p> <p>Trial registration</p> <p>Clinical trials.gov NCT00697957</p

    Systematic evaluation of immune regulation and modulation

    Get PDF
    Cancer immunotherapies are showing promising clinical results in a variety of malignancies. Monitoring the immune as well as the tumor response following these therapies has led to significant advancements in the field. Moreover, the identification and assessment of both predictive and prognostic biomarkers has become a key component to advancing these therapies. Thus, it is critical to develop systematic approaches to monitor the immune response and to interpret the data obtained from these assays. In order to address these issues and make recommendations to the field, the Society for Immunotherapy of Cancer reconvened the Immune Biomarkers Task Force. As a part of this Task Force, Working Group 3 (WG3) consisting of multidisciplinary experts from industry, academia, and government focused on the systematic assessment of immune regulation and modulation. In this review, the tumor microenvironment, microbiome, bone marrow, and adoptively transferred T cells will be used as examples to discuss the type and timing of sample collection. In addition, potential types of measurements, assays, and analyses will be discussed for each sample. Specifically, these recommendations will focus on the unique collection and assay requirements for the analysis of various samples as well as the high-throughput assays to evaluate potential biomarkers
    corecore