690 research outputs found
Retrospective analyses of cisplatin-based doublet combination chemotherapy in patients with advanced gastric cancer
<p>Abstract</p> <p>Backgrounds</p> <p>Cisplatin-based chemotherapy, in combination with fluoropyrimidines or taxanes, have demonstrated efficacy against advanced gastric cancer (AGC). This retrospective study was performed with the data obtained from our cancer chemotherapy registry and eight another cancer centers.</p> <p>Methods</p> <p>In 2008, a total of 283 AGC patients were treated with cisplatin-based doublet chemotherapy in the first-line setting: capecitabine plus cisplatin (XP, n = 77), S-1 plus cisplatin (SP, n = 97), taxanes (docetaxel, paclitaxel) plus cisplatin (TP, n = 72), and 5-fluorouracil plus platinum (FP, n = 37). The primary endpoint of this study was overall survival (OS) and the secondary endpoints were safety, response rate and progression-free survival (PFS).</p> <p>Results</p> <p>The median age was 54 years with a range of 28-78 years and median delivered number of chemotherapy cycles were XP: 4, SP: 5, TP: 5 and FP: 5, respectively. Objective tumor responses (38%; 95% CI, 32-43%) were 40% for XP, 42% for SP, 36% for DP, and 24% for FP. The estimated median PFS was 4.5 months (95% CI, 3.6-5.4 months) and the median OS was 12.3 months (95% CI, 10.8-13.7 months). No statistically significant difference was found between each regimen used as first-line chemotherapy. At multivariate analysis, independent prognostic parameters for OS were prior gastrectomy, peritoneal dissemination, performance status and hemoglobin level</p> <p>Conclusion</p> <p>All of the cisplatin-based doublet chemotherapy regimens appear to be active as first-line chemotherapy for AGC. With better patient selection according to clinical parameters and molecular markers, clinical outcomes of AGC patients in first-line setting can be improved.</p
Histone deacetylase regulates high mobility group A2-targeting microRNAs in human cord blood-derived multipotent stem cell aging
Cellular senescence involves a reduction in adult stem cell self-renewal, and epigenetic regulation of gene expression is one of the main underlying mechanisms. Here, we observed that the cellular senescence of human umbilical cord blood-derived multipotent stem cells (hUCB-MSCs) caused by inhibition of histone deacetylase (HDAC) activity leads to down-regulation of high mobility group A2 (HMGA2) and, on the contrary, to up-regulation of p16INK4A, p21CIP1/WAF1 and p27KIP1. We found that let-7a1, let-7d, let-7f1, miR-23a, miR-26a and miR-30a were increased during replicative and HDAC inhibitor-mediated senescence of hUCB-MSCs by microRNA microarray and real-time quantitative PCR. Furthermore, the configurations of chromatins beading on these miRNAs were prone to transcriptional activation during HDAC inhibitor-mediated senescence. We confirmed that miR-23a, miR-26a and miR-30a inhibit HMGA2 to accelerate the progress of senescence. These findings suggest that HDACs may play important roles in cellular senescence by regulating the expression of miRNAs that target HMGA2 through histone modification
Efficacy of an Educational Material on Second Primary Cancer Screening Practice for Cancer Survivors: A Randomized Controlled Trial
<div><h3>Background</h3><p>Cancer surivors have limited knowledge about second primary cancer (SPC) screening and suboptimal rates of completion of screening practices for SPC. Our objective was to test the efficacy of an educational material on the knowledge, attitudes, and screening practices for SPC among cancer survivors.</p> <h3>Methods</h3><p>Randomized, controlled trial among 326 cancer survivors from 6 oncology care outpatient clinics in Korea. Patients were randomized to an intervention or an attention control group. The intervention was a photo-novel, culturally tailored to increase knowledge about SPC screening. Knowledge and attitudes regarding SPC screening were assessed two weeks after the intervention, and screening practices were assessed after one year.</p> <h3>Results</h3><p>At two weeks post-intervention, the average knowledge score was significantly higher in the intervention compared to the control group (0.81 vs. 0.75, P<0.01), with no significant difference in their attitude scores (2.64 vs. 2.57, Pβ=β0.18). After 1 year of follow-up, the completion rate of all appropriate cancer screening was 47.2% in both intervention and control groups.</p> <h3>Conclusion</h3><p>While the educatinal material was effective for increasing knowledge of SPC screening, it did not promote cancer screening practice among cancer survivors. More effective interventions are needed to increase SPC screening rates in this population.</p> <h3>Trial Registration</h3><p>ClinicalTrial.gov <a href="http://clinicaltrials.gov/ct2/show/NCT00948337">NCT00948337</a></p> </div
ASB9 interacts with ubiquitous mitochondrial creatine kinase and inhibits mitochondrial function
<p>Abstract</p> <p>Background</p> <p>The ankyrin repeat and suppressor of cytokine signalling (SOCS) box proteins (Asbs) are a large protein family implicated in diverse biological processes including regulation of proliferation and differentiation. The SOCS box of Asb proteins is important in a ubiquitination-mediated proteolysis pathway. Here, we aimed to evaluate expression and function of human Asb-9 (ASB9).</p> <p>Results</p> <p>We found that a variant of ASB9 that lacks the SOCS box (ASB9ΞSOCS) was naturally detected in human cell lines but not in peripheral blood mononuclear cells or normal hepatocytes. We also identified ubiquitous mitochondrial creatine kinase (uMtCK) as a new target of ASB9 in human embryonic kidney 293 (HEK293) cells. The ankyrin repeat domains of ASB9 can associate with the substrate binding site of uMtCK in a SOCS box-independent manner. The overexpression of ASB9, but not ASB9ΞSOCS, induces ubiquitination of uMtCK. ASB9 and ASB9ΞSOCS can interact and colocalise with uMtCK in the mitochondria. However, only expression of ASB9 induced abnormal mitochondrial structure and a decrease of mitochondrial membrane potential. Furthermore, the creatine kinase activities and cell growth were significantly reduced by ASB9 but not by ASB9ΞSOCS.</p> <p>Conclusions</p> <p>ASB9 interacts with the creatine kinase system and negatively regulates cell growth. The differential expression and function of ASB9 and ASB9ΞSOCS may be a key factor in the growth of human cell lines and primary cells.</p
A comprehensive 1000 Genomes-based genome-wide association meta-analysis of coronary artery disease
Existing knowledge of genetic variants affecting risk of coronary artery disease (CAD) is largely based on genome-wide association studies (GWAS) analysis of common SNPs. Leveraging phased haplotypes from the 1000 Genomes Project, we report a GWAS meta-analysis of 185 thousand CAD cases and controls, interrogating 6.7 million common (MAF>0.05) as well as 2.7 million low frequency (0.005<MAF<0.05) variants. In addition to confirmation of most known CAD loci, we identified 10 novel loci, eight additive and two recessive, that contain candidate genes that newly implicate biological processes in vessel walls. We observed intra-locus allelic heterogeneity but little evidence of low frequency variants with larger effects and no evidence of synthetic association. Our analysis provides a comprehensive survey of the fine genetic architecture of CAD showing that genetic susceptibility to this common disease is largely determined by common SNPs of small effect siz
The usefulness of arbekacin compared to vancomycin
The bacteriological efficacy response (improved, arbekacin vs. vancomycin; 71.2% vs. 79.5%) and clinical efficacy response (improved, arbekacin vs. vancomycin; 65.3% vs. 76.1%) were not statistically different between the two groups. The complication rate was significantly higher in the vancomycin group (32.9%) compared to the arbekacin group (15.1%) (pβ=β0.019). Arbekacin was not inferior to vancomycin, and it could be a good alternative drug for vancomycin in methicillin-resistant Staphylococcus aureus (MRSA) treatment
p53 Activation following Rift Valley Fever Virus Infection Contributes to Cell Death and Viral Production
Rift Valley fever virus (RVFV) is an emerging viral zoonosis that is responsible for devastating outbreaks among livestock and is capable of causing potentially fatal disease in humans. Studies have shown that upon infection, certain viruses have the capability of utilizing particular cellular signaling pathways to propagate viral infection. Activation of p53 is important for the DNA damage signaling cascade, initiation of apoptosis, cell cycle arrest and transcriptional regulation of multiple genes. The current study focuses on the role of p53 signaling in RVFV infection and viral replication. These results show an up-regulation of p53 phosphorylation at several serine sites after RVFV MP-12 infection that is highly dependent on the viral protein NSs. qRT-PCR data showed a transcriptional up-regulation of several p53 targeted genes involved in cell cycle and apoptosis regulation following RVFV infection. Cell viability assays demonstrate that loss of p53 results in less RVFV induced cell death. Furthermore, decreased viral titers in p53 null cells indicate that RVFV utilizes p53 to enhance viral production. Collectively, these experiments indicate that the p53 signaling pathway is utilized during RVFV infection to induce cell death and increase viral production
Limits on WWZ and WW\gamma couplings from p\bar{p}\to e\nu jj X events at \sqrt{s} = 1.8 TeV
We present limits on anomalous WWZ and WW-gamma couplings from a search for
WW and WZ production in p-bar p collisions at sqrt(s)=1.8 TeV. We use p-bar p
-> e-nu jjX events recorded with the D0 detector at the Fermilab Tevatron
Collider during the 1992-1995 run. The data sample corresponds to an integrated
luminosity of 96.0+-5.1 pb^(-1). Assuming identical WWZ and WW-gamma coupling
parameters, the 95% CL limits on the CP-conserving couplings are
-0.33<lambda<0.36 (Delta-kappa=0) and -0.43<Delta-kappa<0.59 (lambda=0), for a
form factor scale Lambda = 2.0 TeV. Limits based on other assumptions are also
presented.Comment: 11 pages, 2 figures, 2 table
Search For Heavy Pointlike Dirac Monopoles
We have searched for central production of a pair of photons with high
transverse energies in collisions at TeV using of data collected with the D\O detector at the Fermilab Tevatron in
1994--1996. If they exist, virtual heavy pointlike Dirac monopoles could
rescatter pairs of nearly real photons into this final state via a box diagram.
We observe no excess of events above background, and set lower 95% C.L. limits
of on the mass of a spin 0, 1/2, or 1 Dirac
monopole.Comment: 12 pages, 4 figure
The Dijet Mass Spectrum and a Search for Quark Compositeness in bar{p}p Collisions at sqrt{s} = 1.8 TeV
Using the DZero detector at the 1.8 TeV pbarp Fermilab Tevatron collider, we
have measured the inclusive dijet mass spectrum in the central pseudorapidity
region |eta_jet| < 1.0 for dijet masses greater than 200 Gev/c^2. We have also
measured the ratio of spectra sigma(|eta_jet| < 0.5)/sigma(0.5 < |eta_jet| <
1.0). The order alpha_s^3 QCD predictions are in good agreement with the data
and we rule out models of quark compositeness with a contact interaction scale
< 2.4 TeV at the 95% confidence level.Comment: 11 pages, 4 figures, 2 tables, submitted to Phys. Rev. Let
- β¦