508 research outputs found

    Response of benthic nitrogen cycling to estuarine hypoxia

    Get PDF
    The effects of bottom water oxygen concentration on sediment oxygen uptake, oxygen penetration depth, nitrate and ammonium fluxes, anammox, denitrification, dissimilatory nitrate reduction to ammonium, nitrification, and mineralization were investigated off the Changjiang estuary and its adjacent East China Sea, by combining a seasonal comparison with three artificially induced bottom water oxygen conditions (oxic, ambient, and severe hypoxia). A 50% decrease in in-situ bottom water oxygen concentrations between May and August, led to decreases in the average sediment oxygen uptake and oxygen penetration depth by 23% and 29%, respectively. Anammox rates decreased by a factor of 2.5, and the relative contribution of anammox to the total benthic N-loss decreased from 20% to 7.4%. However, denitrification rates increased, leading to an overall benthic N-loss rate of 0.85 mmol N m(-2)d(-1). At the same time, an increasing contribution of dissimilatory nitrate reduction to ammonium to total nitrate reduction led to higher recycling of inorganic nitrogen during hypoxia in August. Under artificially induced conditions of severe hypoxia, there was a sharp decrease in both sediment oxygen uptake and benthic N-loss rates by 88% and 38%, respectively. Nitrate and ammonium fluxes showed complex behavior at different sites which could be related to the repression of sedimentary nitrification below a bottom water oxygen threshold of 9.7 mu M and increasing dissimilatory nitrate reduction to ammonium. Taken together, our results indicate that changes in benthic nutrient cycling under seasonal hypoxia enhance the retention of both organic and inorganic nitrogen, thereby exacerbating oxygen deficiency

    Temperature response of denitrification and anammox reveals the adaptation of microbial communities to in situ temperatures in permeable marine sediments that span 50° in latitude

    Get PDF
    Despite decades of research on the physiology and biochemistry of nitrate/nitrite-respiring microorganisms, little is known regarding their metabolic response to temperature, especially under in situ conditions. The temperature regulation of microbial communities that mediate anammox and denitrification was investigated in near shore permeable sediments at polar, temperate, and subtropical sites with annual mean temperatures ranging from -5 to 23 degrees C. Total N-2 production rates were determined using the isotope pairing technique in intact core incubations under diffusive and simulated advection conditions and ranged from 2 to 359 mu mol N m(-2) d(-1). For the majority of sites studied, N-2 removal was 2-7 times more rapid under simulated advective flow conditions. Anammox comprised 6-14% of total N-2 production at temperate and polar sites and was not detected at the subtropical site. Potential rates of denitrification and anammox were determined in anaerobic slurries in a temperature gradient block incubator across a temperature range of -1 degrees C to 42 degrees C. The highest optimum temperature (T-opt) for denitrification was 36 degrees C and was observed in subtropical sediments, while the lowest T-opt of 21 degrees C was observed at the polar site. Seasonal variation in the T-opt was observed at the temperate site with values of 26 and 34 degrees C in winter and summer, respectively. The T-opt values for anammox were 9 and 26 degrees C at the polar and temperate sites, respectively. The results demonstrate adaptation of denitrifying communities to in situ temperatures in permeable marine sediments across a wide range of temperatures, whereas marine anammox bacteria may be predominately psychrophilic to psychrotolerant. The adaptation of microbial communities to in situ temperatures suggests that the relationship between temperature and rates of N removal is highly dependent on community structure

    Niche partitioning by photosynthetic plankton as a driver of CO2-fixation across the oligotrophic South Pacific Subtropical Ocean

    Get PDF
    Oligotrophic ocean gyre ecosystems may be expanding due to rising global temperatures [1-5]. Models predicting carbon flow through these changing ecosystems require accurate descriptions of phytoplankton communities and their metabolic activities [6]. We therefore measured distributions and activities of cyanobacteria and small photosynthetic eukaryotes throughout the euphotic zone on a zonal transect through the South Pacific Ocean, focusing on the ultraoligotrophic waters of the South Pacific Gyre (SPG). Bulk rates of CO2 fixation were low (0.1 mu mol Cl--(1) d(-1)) but pervasive throughout both the surface mixed-layer (upper 150 m), as well as the deep chlorophyll a maximum of the core SPG. Chloroplast 16S rRNA metabarcoding, and single-cell (CO2)-C-13 uptake experiments demonstrated niche differentiation among the small eukaryotes and picocyanobacteria. Prochlorococcus abundances, activity, and growth were more closely associated with the rims of the gyre. Small, fast-growing, photosynthetic eukaryotes, likely related to the Pelagophyceae, characterized the deep chlorophyll a maximum. In contrast, a slower growing population of photosynthetic eukaryotes, likely comprised of Dictyochophyceae and Chrysophyceae, dominated the mixed layer that contributed 65-88% of the areal CO2 fixation within the core SPG. Small photosynthetic eukaryotes may thus play an underappreciated role in CO2 fixation in the surface mixed-layer waters of ultraoligotrophic ecosystems

    Neuroinflammation and structural injury of the fetal ovine brain following intra-amniotic Candida albicans exposure.

    Get PDF
    BackgroundIntra-amniotic Candida albicans (C. Albicans) infection is associated with preterm birth and high morbidity and mortality rates. Survivors are prone to adverse neurodevelopmental outcomes. The mechanisms leading to these adverse neonatal brain outcomes remain largely unknown. To better understand the mechanisms underlying C. albicans-induced fetal brain injury, we studied immunological responses and structural changes of the fetal brain in a well-established translational ovine model of intra-amniotic C. albicans infection. In addition, we tested whether these potential adverse outcomes of the fetal brain were improved in utero by antifungal treatment with fluconazole.MethodsPregnant ewes received an intra-amniotic injection of 10(7) colony-forming units C. albicans or saline (controls) at 3 or 5 days before preterm delivery at 0.8 of gestation (term ~ 150 days). Fetal intra-amniotic/intra-peritoneal injections of fluconazole or saline (controls) were administered 2 days after C. albicans exposure. Post mortem analyses for fungal burden, peripheral immune activation, neuroinflammation, and white matter/neuronal injury were performed to determine the effects of intra-amniotic C. albicans and fluconazole treatment.ResultsIntra-amniotic exposure to C. albicans caused a severe systemic inflammatory response, illustrated by a robust increase of plasma interleukin-6 concentrations. Cerebrospinal fluid cultures were positive for C. albicans in the majority of the 3-day C. albicans-exposed animals whereas no positive cultures were present in the 5-day C. albicans-exposed and fluconazole-treated animals. Although C. albicans was not detected in the brain parenchyma, a neuroinflammatory response in the hippocampus and white matter was seen which was characterized by increased microglial and astrocyte activation. These neuroinflammatory changes were accompanied by structural white matter injury. Intra-amniotic fluconazole reduced fetal mortality but did not attenuate neuroinflammation and white matter injury.ConclusionsIntra-amniotic C. albicans exposure provoked acute systemic and neuroinflammatory responses with concomitant white matter injury. Fluconazole treatment prevented systemic inflammation without attenuating cerebral inflammation and injury

    Acute neuropsychological effects of MDMA and ethanol (co-)administration in healthy volunteers

    Get PDF
    Contains fulltext : 73592.pdf (publisher's version ) (Open Access)RATIONALE: In Western societies, a considerable percentage of young people expose themselves to 3,4-methylenedioxymethamphetamine (MDMA or "ecstasy"). Commonly, ecstasy is used in combination with other substances, in particular alcohol (ethanol). MDMA induces both arousing as well as hallucinogenic effects, whereas ethanol is a general central nervous system depressant. OBJECTIVE: The aim of the present study is to assess the acute effects of single and co-administration of MDMA and ethanol on executive, memory, psychomotor, visuomotor, visuospatial and attention function, as well as on subjective experience. MATERIALS AND METHODS: We performed a four-way, double-blind, randomised, crossover, placebo-controlled study in 16 healthy volunteers (nine male, seven female) between the ages of 18-29. MDMA was given orally (100 mg) and blood alcohol concentration was maintained at 0.6 per thousand by an ethanol infusion regime. RESULTS: Co-administration of MDMA and ethanol was well tolerated and did not show greater impairment of performance compared to the single-drug conditions. Impaired memory function was consistently observed after all drug conditions, whereas impairment of psychomotor function and attention was less consistent across drug conditions. CONCLUSIONS: Co-administration of MDMA and ethanol did not exacerbate the effects of either drug alone. Although the impairment of performance by all drug conditions was relatively moderate, all induced significant impairment of cognitive function

    Swabbing for respiratory viral infections in older patients: a comparison of rayon and nylon flocked swabs

    Get PDF
    The purpose of this study was to compare the sampling efficacy of rayon swabs and nylon flocked swabs, and of oropharyngeal and nasopharyngeal specimens for the detection of respiratory viruses in elderly patients. Samples were obtained from patients 60 years of age or above who were newly admitted to Sorlandet Hospital Arendal, Norway. The patients were interviewed for current symptoms of a respiratory tract infection. Using rayon swabs and nylon flocked swabs, comparable sets of mucosal samples were harvested from the nasopharynx and the oropharynx. The samples were analysed using real-time polymerase chain reaction (PCR) methods. A total of 223 patients (mean age 74.9 years, standard deviation [SD] 9.0 years) were swabbed and a virus was recovered from 11% of the symptomatic patients. Regardless of the sampling site, a calculated 4.8 times higher viral load (95% confidence interval [CI] 1.3–17, p = 0.017) was obtained using the nylon flocked swabs as compared to the rayon swabs. Also, regardless of the type of swab, a calculated 19 times higher viral load was found in the samples from the nasopharynx as compared to the oropharynx (95% CI 5.4–67.4, p < 0.001). When swabbing for respiratory viruses in elderly patients, nasopharyngeal rather than oropharyngeal samples should be obtained. Nylon flocked swabs appear to be more efficient than rayon swabs

    The interactions of age, genetics, and disease severity on tacrolimus dosing requirements after pediatric kidney and liver transplantation

    Get PDF
    Purpose: In children, data on the combined impact of age, genotype, and disease severity on tacrolimus (TAC) disposition are scarce. The aim of this study was to evaluate the effect of these covariates on tacrolimus dose requirements in the immediate post-transplant period in pediatric kidney and liver recipients. Methods: Data were retrospectively collected describing tacrolimus disposition, age, CYP3A5 and ABCB1 genotype, and pediatric risk of mortality (PRISM) scores for up to 14 days post-transplant in children receiving liver and renal transplants. Initial TAC dosing was equal in all patients and adjusted using therapeutic drug monitoring. We determined the relationship between covariates and tacrolimus disposition. Results: Forty-eight kidney and 42 liver transplant recipients (median ages 11.5 and 1.5 years, ranges 1.5-17.7 and 0.05-14.8 years, respectively) received TAC post-transplant. In both transplant groups, younger children (<5 years) needed higher TAC doses than older children [kidney: 0.15 (0.07-0.35) vs. 0.09 (0.02-0.20) mg/kg/12h, p = 0.046, liver: 0.12 (0.04-0.32) vs. 0.09 (0.01-0.18) mg/kg/12h, p

    Advances in methods for detection of anaerobic ammonium oxidizing (anammox) bacteria

    Get PDF
    Anaerobic ammonium oxidation (anammox), the biochemical process oxidizing ammonium into dinitrogen gas using nitrite as an electron acceptor, has only been recognized for its significant role in the global nitrogen cycle not long ago, and its ubiquitous distribution in a wide range of environments has changed our knowledge about the contributors to the global nitrogen cycle. Currently, several groups of methods are used in detection of anammox bacteria based on their physiological and biochemical characteristics, cellular chemical composition, and both 16S rRNA gene and selective functional genes as biomarkers, including hydrazine oxidoreductase and nitrite reductase encoding genes hzo and nirS, respectively. Results from these methods coupling with advances in quantitative PCR, reverse transcription of mRNA genes and stable isotope labeling have improved our understanding on the distribution, diversity, and activity of anammox bacteria in different environments both natural and engineered ones. In this review, we summarize these methods used in detection of anammox bacteria from various environments, highlight the strengths and weakness of these methods, and also discuss the new development potentials on the existing and new techniques in the future

    Ovine Fetal Thymus Response to Lipopolysaccharide-Induced Chorioamnionitis and Antenatal Corticosteroids

    Get PDF
    RATIONALE: Chorioamnionitis is associated with preterm delivery and involution of the fetal thymus. Women at risk of preterm delivery receive antenatal corticosteroids which accelerate fetal lung maturation and improve neonatal outcome. However, the effects of antenatal corticosteroids on the fetal thymus in the settings of chorioamnionitis are largely unknown. We hypothesized that intra-amniotic exposure to lipopolysaccharide (LPS) causes involution of the fetal thymus resulting in persistent effects on thymic structure and cell populations. We also hypothesized that antenatal corticosteroids may modulate the effects of LPS on thymic development. METHODS: Time-mated ewes with singleton fetuses received an intra-amniotic injection of LPS 7 or 14 days before preterm delivery at 120 days gestational age (term = 150 days). LPS and corticosteroid treatment groups received intra-amniotic LPS either preceding or following maternal intra-muscular betamethasone. Gestation matched controls received intra-amniotic and maternal intra-muscular saline. The fetal intra-thoracic thymus was evaluated. RESULTS: Intra-amniotic LPS decreased the cortico-medullary (C/M) ratio of the thymus and increased Toll-like receptor (TLR) 4 mRNA and CD3 expression indicating involution and activation of the fetal thymus. Increased TLR4 and CD3 expression persisted for 14 days but Foxp3 expression decreased suggesting a change in regulatory T-cells. Sonic hedgehog and bone morphogenetic protein 4 mRNA, which are negative regulators of T-cell development, decreased in response to intra-amniotic LPS. Betamethasone treatment before LPS exposure attenuated some of the LPS-induced thymic responses but increased cleaved caspase-3 expression and decreased the C/M ratio. Betamethasone treatment after LPS exposure did not prevent the LPS-induced thymic changes. CONCLUSION: Intra-amniotic exposure to LPS activated the fetal thymus which was accompanied by structural changes. Treatment with antenatal corticosteroids before LPS partially attenuated the LPS-induced effects but increased apoptosis in the fetal thymus. Corticosteroid administration after the inflammatory stimulus did not inhibit the LPS effects on the fetal thymus
    corecore