530 research outputs found
External sources of clean technology: evidence from the clean development mechanism
New technology is fundamental to sustainable development. However, inventors from industrialized countries often refuse technology transfer because they worry about reverse-engineering. When can clean technology transfer succeed? We develop a formal model of the political economy of NorthâSouth technology transfer. According to the model, technology transfer is possible if (1) the technology in focus has limited global commercial potential or (2) the host developing country does not have the capacity to absorb new technologies for commercial use. If both conditions fail, inventors from industrialized countries worry about the adverse competitiveness effects of reverse-engineering, so technology transfer fails. Data analysis of technology transfer in 4,894 projects implemented under the Kyoto Protocolâs Clean Development Mechanism during the 2004â2010 period provides evidence in support of the model
R-parity violation in SU(5)
We show that judiciously chosen R-parity violating terms in the minimal
renormalizable supersymmetric SU(5) are able to correct all the
phenomenologically wrong mass relations between down quarks and charged
leptons. The model can accommodate neutrino masses as well. One of the most
striking consequences is a large mixing between the electron and the Higgsino.
We show that this can still be in accord with data in some regions of the
parameter space and possibly falsified in future experiments.Comment: 30 pages, 1 figure. Revised version. To appear in JHE
The flavor puzzle in multi-Higgs models
We reconsider the flavor problem in the models with two Higgs doublets. By
studying two generation toy models, we look for flavor basis independent
constraints on Yukawa couplings that will give us the mass hierarchy while
keeping all Yukawa couplings of the same order. We then generalize our findings
to the full three generation Standard Model. We find that we need two
constraints on the Yukawa couplings to generate the observed mass hierarchy,
and a slight tuning of Yukawa couplings of order 10%, much less than the
Standard Model. We briefly study how these constraints can be realized, and
show how flavor changing currents are under control for mixing in
the near-decoupling limit.Comment: 26 pages, typos are corrected, references are added, the final
versio
Beyond the standard seesaw: neutrino masses from Kahler operators and broken supersymmetry
We investigate supersymmetric scenarios in which neutrino masses are
generated by effective d=6 operators in the Kahler potential, rather than by
the standard d=5 superpotential operator. First, we discuss some general
features of such effective operators, also including SUSY-breaking insertions,
and compute the relevant renormalization group equations. Contributions to
neutrino masses arise at low energy both at the tree level and through finite
threshold corrections. In the second part we present simple explicit
realizations in which those Kahler operators arise by integrating out heavy
SU(2)_W triplets, as in the type II seesaw. Distinct scenarios emerge,
depending on the mechanism and the scale of SUSY-breaking mediation. In
particular, we propose an appealing and economical picture in which the heavy
seesaw mediators are also messengers of SUSY breaking. In this case, strong
correlations exist among neutrino parameters, sparticle and Higgs masses, as
well as lepton flavour violating processes. Hence, this scenario can be tested
at high-energy colliders, such as the LHC, and at lower energy experiments that
measure neutrino parameters or search for rare lepton decays.Comment: LaTeX, 34 pages; some corrections in Section
The Impact of a 4th Generation on Mixing and CP Violation in the Charm System
We study D0-D0 mixing in the presence of a fourth generation of quarks. In
particular, we calculate the size of the allowed CP violation which is found at
the observable level well beyond anything possible with CKM dynamics. We
calculate the semileptonic asymmetry a_SL and the mixing induced CP asymmetry
eta_fS_f which are correlated with each other. We also investigate the
correlation of eta_fS_f with a number of prominent observables in other mesonic
systems like epsilon'/epsilon, Br(K_L -> pi0 nu nu), Br(K+ -> pi+ nu nu),
Br(B_s ->mu+ mu-), Br(B_d -> mu+ mu-) and finally S_psi phi in the B_s system.
We identify a clear pattern of flavour and CP violation predicted by the SM4
model: While simultaneous large 4G effects in the K and D systems are possible,
accompanying large NP effects in the B_d system are disfavoured. However this
behaviour is not as pronounced as found for the LHT and RSc models. In contrast
to this, sizeable CP violating effects in the B_s system are possible unless
extreme effects in eta_fS_f are found, and Br(B_s ->mu+ mu-) can be strongly
enhanced regardless of the situation in the D system. We find that, on the
other hand, S_psi phi > 0.2 combined with the measured epsilon'/epsilon
significantly diminishes 4G effects within the D system.Comment: 22 pages, 23 figures, v2 (references added
Neutrino Mass and from a Mini-Seesaw
The recently proposed "mini-seesaw mechanism" combines naturally suppressed
Dirac and Majorana masses to achieve light Standard Model neutrinos via a
low-scale seesaw. A key feature of this approach is the presence of multiple
light (order GeV) sterile-neutrinos that mix with the Standard Model. In this
work we study the bounds on these light sterile-neutrinos from processes like
\mu ---> e + \gamma, invisible Z-decays, and neutrinoless double beta-decay. We
show that viable parameter space exists and that, interestingly, key
observables can lie just below current experimental sensitivities. In
particular, a motivated region of parameter space predicts a value of BR(\mu
---> e + \gamma) within the range to be probed by MEG.Comment: 1+26 pages, 7 figures. v2 JHEP version (typo's fixed, minor change to
presentation, results unchanged
Non-standard interactions versus non-unitary lepton flavor mixing at a neutrino factory
The impact of heavy mediators on neutrino oscillations is typically described
by non-standard four-fermion interactions (NSIs) or non-unitarity (NU). We
focus on leptonic dimension-six effective operators which do not produce
charged lepton flavor violation. These operators lead to particular
correlations among neutrino production, propagation, and detection non-standard
effects. We point out that these NSIs and NU phenomenologically lead, in fact,
to very similar effects for a neutrino factory, for completely different
fundamental reasons. We discuss how the parameters and probabilities are
related in this case, and compare the sensitivities. We demonstrate that the
NSIs and NU can, in principle, be distinguished for large enough effects at the
example of non-standard effects in the --sector, which basically
corresponds to differentiating between scalars and fermions as heavy mediators
as leading order effect. However, we find that a near detector at superbeams
could provide very synergistic information, since the correlation between
source and matter NSIs is broken for hadronic neutrino production, while NU is
a fundamental effect present at any experiment.Comment: 32 pages, 5 figures. Final version published in JHEP. v3: Typo in Eq.
(27) correcte
New physics searches at near detectors of neutrino oscillation experiments
We systematically investigate the prospects of testing new physics with tau
sensitive near detectors at neutrino oscillation facilities. For neutrino beams
from pion decay, from the decay of radiative ions, as well as from the decays
of muons in a storage ring at a neutrino factory, we discuss which effective
operators can lead to new physics effects. Furthermore, we discuss the present
bounds on such operators set by other experimental data currently available.
For operators with two leptons and two quarks we present the first complete
analysis including all relevant operators simultaneously and performing a
Markov Chain Monte Carlo fit to the data. We find that these effects can induce
tau neutrino appearance probabilities as large as O(10^{-4}), which are within
reach of forthcoming experiments. We highlight to which kind of new physics a
tau sensitive near detector would be most sensitive.Comment: 20 pages, 2 figures, REVTeX
FCNC Effects in a Minimal Theory of Fermion Masses
As a minimal theory of fermion masses we extend the SM by heavy vectorlike
fermions, with flavor-anarchical Yukawa couplings, that mix with chiral
fermions such that small SM Yukawa couplings arise from small mixing angles.
This model can be regarded as an effective description of the fermionic sector
of a large class of existing flavor models and thus might serve as a useful
reference frame for a further understanding of flavor hierarchies in the SM.
Already such a minimal framework gives rise to FCNC effects through exchange of
massive SM bosons whose couplings to the light fermions get modified by the
mixing. We derive general formulae for these corrections and discuss the bounds
on the heavy fermion masses. Particularly stringent bounds, in a few TeV range,
come from the corrections to the Z couplings.Comment: 19 pages, 1 figur
An A4 flavor model for quarks and leptons in warped geometry
We propose a spontaneous A4 flavor symmetry breaking scheme implemented in a
warped extra dimensional setup to explain the observed pattern of quark and
lepton masses and mixings. The main advantages of this choice are the
explanation of fermion mass hierarchies by wave function overlaps, the
emergence of tribimaximal neutrino mixing and zero quark mixing at the leading
order and the absence of tree-level gauge mediated flavor violations. Quark
mixing is induced by the presence of bulk flavons, which allow for cross-brane
interactions and a cross-talk between the quark and neutrino sectors, realizing
the spontaneous symmetry breaking pattern A4 --> nothing first proposed in
[X.G.\,He, Y.Y.\,Keum, R.R.\,Volkas, JHEP{0604}, 039 (2006)]. We show that the
observed quark mixing pattern can be explained in a rather economical way,
including the CP violating phase, with leading order cross-interactions, while
the observed difference between the smallest CKM entries V_{ub} and V_{td} must
arise from higher order corrections. We briefly discuss bounds on the
Kaluza-Klein scale implied by flavor changing neutral current processes in our
model and show that the residual little CP problem is milder than in flavor
anarchic models.Comment: 34 pages, 2 figures; version published in JHE
- âŠ