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1 Introduction

Warped extra dimensions [1, 2], which have been proposed as an alternative solution to
the gauge hierarchy problem, also provide a simple framework in which fermion masses are
explained by the overlap of the fermion and Higgs wave functions in the bulk of the warped
extra dimension [3–6]. Having the zero mode fermions peaked at different points in the
fifth dimension, the exponentially hierarchical masses of quarks and charged leptons can be
obtained with a tiny hierarchy of bulk masses and all 5D Yukawa couplings being of order
unity [7–10]. However, letting the standard model (SM) fermion content propagate through
the bulk generally results in large contributions to electroweak precision observables, such
as the Peskin-Takeuchi S, T parameters, unless the lowest Kaluza-Klein (KK) mass scale
is unnaturally pushed to values much higher than a TeV. To suppress these contributions,
more realistic models involving a bulk custodial symmetry, broken differently at the two
branes [11] were constructed. Alternatively, large brane kinetic terms were introduced [12–
14]. In both cases a mass of the first KK excited state as low as O(3 TeV), is now allowed
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by electroweak precision data. Another problem arises, this time due to the presence of non
degenerate 5D bulk mass parameters, governing the localization of bulk zero modes. The
non degeneracy induces new physics (NP) contributions to flavor changing neutral current
(FCNC) processes mediated by KK excitations of the gauge bosons and fermions, through
gauge interactions in the fermion kinetic terms and 5D Yukawa interactions. In the most
general case, without imposing any additional flavor symmetry and assuming anarchical 5D
Yukawa couplings, new physics contributions can already be generated at tree level through
a KK gauge boson exchange. Even if an RS-GIM suppression mechanism [10, 15, 16] is at
work, stringent constraints on the KK scale come from the K0 −K0 oscillation parameter
εK and the radiative decays b→ s(d)γ [17–19], the direct CP violation parameter ε′/εK [20],
and especially the neutron electric dipole moment [17–19], where a mass of the first KK
state of O(3 TeV) gives rise to a NP contribution which is roughly twenty times larger than
the current experimental bound — a CP problem in itself, referred to as little CP problem.
Stringent constraints on the KK scale are also present in the lepton sector [21–25]. Even in
the absence of neutrino masses, severe bounds arise from contributions to FCNC processes
mediated by tree level KK gauge bosons with anarchical 5D Yukawa couplings [25]. It
was also recently observed [26–28] that the mixing between fermion zero modes and KK
modes generally induces a misalignment in the 4D effective theory between the SM fermion
masses and the Higgs Yukawa couplings. This misalignment leads to Higgs mediated flavor
changing neutral currents, once the fermion mass matrix is diagonalized. In particular, εK
is found [26–28] to produce stringent combined lower bounds on the KK gluon and the
standard model Higgs mass in flavor anarchic models.

Additional flavor symmetries in the bulk can in principle allow to partially or fully
remove these constraints, by forbidding or providing a further suppression of tree level FC-
NCs and one loop contributions induced by the presence of KK modes. One example that
removes or suppresses all tree level contributions is the generalization to 5D of minimal fla-
vor violation in the quark sector [29, 30] and in the lepton sector [31, 32]. In these settings,
the bulk mass matrices are aligned with the 5D Yukawa matrices as a result of a bulk [U(3)]6

flavor symmetry that is broken in a controlled manner. In [33] a shining mechanism is pro-
posed, where the suppression of flavor violation in the effective 4D theory on the IR brane is
obtained by confining the sources of flavor violation to the UV brane, and communicating
its effects through gauge bosons of the gauged bulk flavor symmetry. There, it is also shown
that Higgs mediated FCNCs are eliminated to leading order, and a lowest KK scale of about
2-3 TeV seems to be allowed, rendering the model testable at collider experiments [34–38].

All above considerations suggest that a candidate for a realistic model of lepton and
quark masses and mixings in a warped setup should possibly be realized with all standard
model fields in the bulk, including the Higgs field, a bulk custodial symmetry and an
additional flavor symmetry, to avoid large new physics contributions and maintain the KK
scale of order a TeV. In [39], see also [40], a bulk A4 family symmetry [41–44] was used to
explain masses and mixings in the SM lepton sector. In this setting, the three left-handed
lepton doublets form a triplet of A4 to generate tribimaximal (TBM) neutrino mixing [45],
in agreement with the recent global fit in [46]. In addition, tree-level leptonic FCNCs are
absent in this scheme. While the simplest realization of A4 well describes the lepton sector,
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it does not give rise to a realistic quark sector. In this paper, we propose a model based
on a bulk A4 family symmetry, implemented in a slightly different setup, in an attempt to
describe both the quark and lepton sectors. In this setup the scalar fields that transform
under non trivial representations of A4, namely two flavon triplets, reside in the bulk.
Consequently, they allow for a complete ”cross-talk” [47] between the A4 → Z2 spontaneous
symmetry breaking (SSB) pattern associated with the heavy neutrino sector — with scalar
mediator peaked towards the UV brane — and the A4 → Z3 SSB pattern associated with
the quark and charged lepton sectors — with scalar mediator peaked towards the IR brane.
As in previous models based on A4, the three generations of left-handed quarks transform
as triplets of A4; this assignment forbids tree level gauge mediated FCNCs and will allow
to obtain realistic masses and almost realistic mixing angles in the quark sector. It will
also be instructive to compare this pattern to the case of larger realizations of the flavor
symmetry, like T ′ [48–53], which are usually associated with a rather richer flavon sector.

An additional feature worth to mention is the constraint on the common left-handed
quarks bulk mass parameter implied by the Zbb̄ best fits in our model. The numerical
significance of such a constraint has been thoroughly investigated in the minimal version
of RS models [54], and it is largely relaxed in models with (extended) PLR custodial sym-
metry [55, 56].

The paper is organized as follows. In section 2 we review the basic setup of the model
and the various representation assignments. We then present a RS model with custodial
symmetry and a bulk A4 family symmetry, and derive the leading order results for masses
and mixings. In section 3 we classify all higher order corrections, including cross-talk
and cross-brane operators for leptons and quarks and parametrize their effect. Section 4
contains our numerical analysis and results. In section 5 we discuss the vacuum alignment
problem and suggest possible solutions, while in section 6 we briefly discuss constraints from
flavor violating processes on the Kaluza-Klein scale in our model. We conclude in section 7.

2 The model and leading order results

We adopt the RS1 framework and thus assume the bulk of our model to be a slice of AdS5,
with the extra dimension, y, compactified on an orbifold S1/Z2 with radius R. Two 3-
branes with opposite tension are located at the orbifold fixed points y = 0, the UV brane,
and y = πR, the IR brane. The resulting bulk geometry is described by the metric

ds2 = dy2 + e−2k|y|ηµνdx
µdxν , (2.1)

where k ∼MPl is the AdS5 curvature scale. The geometric warp factor sequestering the two
branes generates two characteristic scales within this setup, k and MKK ≡ k exp(−kπR),
the latter referred to as the KK scale.1 The electroweak scale naturally arises for kR ' 11.

All matter fields of our model, fermions and scalars including the Higgs field, live in
the bulk and we allow for arbitrary Z2 ×Z ′2 orbifold boundary conditions, where Z2 is the
reflection about y = 0 and Z ′2 is the reflection about y = πR. In other words, we allow for

1Notice that the first KK gauge boson mass is about 2.45 MKK
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discontinuity of the bulk profiles at the orbifold fixed points by the presence of non trivial
Scherk-Schwarz twists [57, 58].

The symmetry group in our model is

G = Gcust
SM ×A4 × Z2 = SU(3)c × SU(2)L × SU(2)R ×U(1)B−L ×A4 × Z2 . (2.2)

The bulk gauge symmetry Gcust
SM is augmented by an A4 flavor symmetry plus an auxiliary

Z2, whose nature and role will be explained below. In addition, the electroweak gauge
group is extended to SU(2)L× SU(2)R ×U(1)B−L to incorporate custodial symmetry [11],
and thus protect electroweak precision measurements with the lightest Kaluza-Klein mass
being as light as O(4TeV). This symmetry is broken down to the SM group SU(2)L×U(1)Y
on the UV brane, and down to SU(2)D ×U(1)B−L on the IR brane.

Both breaking patterns can be realized by orbifold boundary conditions on the gauge
fields under Z2×Z ′2 as in [11]. In particular, the complete UV breaking pattern is achieved
via an SU(2)R doublet (1, 2)1/2 or a triplet scalar VEV, while a bidoublet (2, 2)0 Higgs
VEV induces the IR breaking. These fields can either be decoupled by taking their infinite
mass limit as in higgsless models, or be dynamical and used to generate masses of quarks
and leptons, as it is true in our case for the Higgs field. Notice also that, in our case, the
bidoublet Higgs field lives in the bulk and it is peaked towards the IR brane.

We introduce two scalar flavons Φ and χ and a Higgs field transforming under Gcust
SM ×

A4 as
Φ ∼ (1, 1, 1, 0) (3) , χ ∼ (1, 1, 1, 0) (3) , H (1, 2, 2, 0) (1) . (2.3)

The three families of quarks and leptons are assigned to the following representations:

QL ∼
(

3, 2, 1,
1
3

)
(3) `L ∼ (1, 2, 1,−1) (3)

uR ⊕ u′R ⊕ u′′R ∼
(

3, 1, 2,
1
3

)
(1⊕ 1′ ⊕ 1′′) νR ∼ (1, 1, 2, 0) (3)

dR ⊕ d′R ⊕ d′′R ∼
(

3, 1, 2,
1
3

)
(1⊕ 1′ ⊕ 1′′) eR ⊕ e′R ⊕ e′′R ∼ (1, 1, 2,−1) (1⊕ 1′ ⊕ 1′′) ,

(2.4)
where the A4 notation is explained in the appendix, and the Gcust

SM notation is standard.
The Z2 assignments will be specified later. Models with similar A4 assignments for leptons
and scalar fields have been considered before [41–44, 47], thus many of the leading order
properties are shared with our model. Notice that the right-handed neutrinos are assigned
to a 3 of A4, whereas the right-handed charged-fermions are each given a 1 ⊕ 1′ ⊕ 1′′

structure. It is also important to notice that we have a separate SU(2)R doublet for each
right handed fermion.

Bulk fermions are assigned specific parities under Z2 × Z ′2, so that zero modes will
provide the standard model particle content. As implied by the invariance of the 5D action,
the bulk fermion field Ψ transforms as Ψ(y) = Zγ5Ψ(−y) and Ψ(π + y) = Z ′γ5Ψ(π − y),
with Z, Z ′ = ±1, under Z2 and Z ′2, respectively. The 5D fermion corresponds to two Weyl
spinors of opposite chirality in 4D

Ψ =

(
ξ

ψ̄

)
(2.5)
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and with opposite Z2 and Z ′2 parities. Hence, if ξ has parities (Z,Z ′) = (+, +), ψ̄ has
parities (−, −). Even parity at y = 0 or y = πR implies Neumann-like boundary conditions
on the bulk fermion profile, while odd parity implies Dirichlet boundary conditions. It
follows that a massless zero-mode only exists for a (+, +) Weyl spinor.

The bulk profile of the would-be zero mode is shaped by the fermionic bulk mass term
with mass m = ε(y)ck, and ε(y) is the sign function. For c > 1/2 (resp. c < 1/2), the zero
mode is exponentially localized on the UV (IR) brane. Finally, it is important to notice
that since SU(2)R is broken on the UV brane, the two components of each SU(2)R doublet
must have opposite Z2 parities. To get a massless zero mode from both components, we
thus need to double the number of doublets [11], and we do this for quarks and leptons.
Taking into account the above considerations, we assign the following boundary conditions
to leptons, in the absence of localized mass terms:

`L =
(
L [+,+]

)
eR, µR, τR =

(
ν̃e,µ,τ [+,−]

eR, µR, τR [−,−]

)
νR =

(
νR [−,−]
˜̀ [+,−]

)
, (2.6)

where the parities (Z, Z ′) are given for the upper Weyl spinor ξ, while ψ̄ has the opposite
conditions. Hence, there is a left handed zero mode for each left handed doublet in `L,
` = e, µ, τ , and a single right handed zero mode in eR, µR, τR and νR each. These fields
have bulk masses, in units of the AdS curvature, given by c` L, c`R and cνR, with ` = e, µ, τ ,
and we work in the basis where they are real and diagonal. An important restriction is
due to the A4(×Z2) bulk global symmetry: since the three left handed lepton doublets are
unified into a triplet of A4, they will share one common c parameter which we label c`L.

Analogously, the boundary conditions for the quarks are chosen to be:

QL=
(
QL [+,+]

)
uR, cR, tR=

(
uR, cR, tR [−,−]
d̃, s̃, b̃ [+,−]

)
dR, sR, bR=

(
ũ, c̃, t̃ [+,−]

dR, sR, bR [−,−]

)
.

(2.7)
In this way we have a left handed massless zero mode for the three left handed doublets
in QL and a single right handed zero mode in uR, cR, tR, dR, sR and bR each. Again, the
three left handed quark doublets, being assigned to a triplet of A4, share one common bulk
mass parameter, cqL. The right handed quarks are assigned to distinct one dimensional
representations of A4, hence there are 6 different bulk mass parameters entering their zero
mode profiles, cu,di and i = 1, 2, 3.

The G invariant 5D Yukawa lagrangian at leading order reads

LYuk(5D) = Λ−2
5D[yu(QLΦ)1H uR + y′u(QLΦ)1′ H u′′R + y′′u(QLΦ)1′′ H u′R

+yd(QLΦ)1 H̃ dR + y′d(QLΦ)1′ H̃ d′′R + y′′d(QLΦ)1′′ H̃ d′R

+ye(`LΦ)1 H̃ eR + y′e(`LΦ)1′ H̃ e′′R + y′′e (`LΦ)1′′ H̃ e′R ]

+Λ−1/2
5D

[
yDν (`LνR)1H + yχ[νR(νR)c]3s · χ

]
+M [νR(νR)c]1 + h.c. , (2.8)

where H̃ ≡ iτ2LH
∗, all fields propagate in the bulk and Λ5D is naturally of order MPl.

The Higgs and Φ fields are chosen to be peaked towards the IR brane at y = πR, while
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the field χ is peaked towards the UV brane at y = 0, for phenomenological reasons. The
lagrangian in eq. (2.8) has a relatively simple structure. Each charged fermion sector u, d,
e has three independent Yukawa terms, all involving the A4 triplet field Φ and the Higgs
field. By construction, the neutrino Dirac term is governed by a single coupling constant
yDν and involves the Higgs only, while the right-handed Majorana sector contains one bare
Majorana mass M , and a single Yukawa coupling yχ to the electroweak singlet and A4

triplet χ. In total there are only twelve, a priori complex, Yukawa parameters to describe
masses and mixings of nine Dirac and six Majorana fermions. All of these parameters will
be taken to be universal and of O(1) in the construction of section 4.

The lagrangian in eq. (2.8) respects an additional Z2 symmetry, under which QL, `L,
νR and Φ are odd, while all other fields are even. This non-flavor symmetry ensures that
the Gcust

SM ×A4 invariant term `LΦHνR is absent from the Lagrangian.
All the SM fields are identified with the 4D components of the zero modes in the

Kaluza-Klein decomposition of the bulk fields. Masses and mixings for leptons and quarks
are induced by eq. (2.8) once the flavons Φ, χ and the Higgs have acquired a VEV. The
VEVs of Φ and χ will be responsible for providing two distinct patterns of spontaneous
symmetry breaking of A4. The VEV profiles for the scalar fields in our model are solu-
tions of the bulk equations of motion with almost vanishing bulk mass for stabilization
purposes [59], an IR localized quartic double well potential for Φ and the Higgs, and a
similar term for χ on the UV brane. To leading order in exp(−2πkR), they read

Φa(y) = vae
4(k|y|−πkR) H(y) = H0e

4(k|y|−πkR) χa(y) = χa(1− e4(k|y|−πkR)) , (2.9)

where a = 1, 2, 3 denotes the A4 component. The size of the SM fermion masses is thus
determined by the amount of wavefunction overlap of two zero modes of opposite chirality,
corresponding to the same Dirac fermion in 4D, together with the VEV profiles of the
corresponding scalar fields. This holds as far as the zero mode approximation (ZMA) is a
good description of the 4D reduction of our model. In general, the presence of kinetic and
potential boundary terms for the scalar fields will, after SSB of A4 and the electroweak
symmetry, lead to boundary conditions that mix all levels of KK fermions. The light modes
are however rather insensitive to the presence of these boundary terms and can be treated
as a small perturbation. Thus, to leading order, the low energy mass spectrum can be
obtained by using the zero mode profiles of all bulk fields. The accuracy of the ZMA in
each specific case depends on the lightness of the lowest lying KK states. Since the largest
mass present in our model is that of the t quark, mt = 171.3 GeV, the ZMA turns out to
be as accurate as mtMKK ' 0.03 for the masses of the zero mode fermions.

Writing out the charged-fermion f = u, d, e Yukawa invariants of eq. (2.8), and follow-
ing the rules in the appendix, one finds that each of the three mass matrices has the form

Mf =
∫ πR

−πR
dy
√
−g H(y)

Λ2
5D

(
f1L, f2L, f3L

) yΦ1 y′Φ1 y′′Φ1

yΦ2 ωy′Φ2 ω2y′′Φ2

yΦ3 ω2y′Φ3 ωy′′Φ3


 fR
f ′′R
f ′R

+ h.c.

(2.10)
where the scalar profiles H(y) and Φa(y) are from eq. (2.9), the metric factor is

√
−g =

exp(−4k|y|), the Yukawas y, y′, y′′ have a suppressed subscript f , and fL,R(y) are the
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fermion bulk profiles. The numerical subscripts 1, 2, 3 denote A4 components, as in the
appendix. For the special VEV pattern of Φ

v1 = v2 = v3 ≡ Φ0, (2.11)

we define v ≡ H0Φ0/Λ2
5D, and each of the above mass matrices translates into the effective

4D mass matrix

Mf = U(ω)


√

3ỹfv 0 0
0

√
3ỹ′fv 0

0 0
√

3ỹ′′fv

 ỹf = yf

∫ πR

−πR

dy

2πR
F (cLf , cRf )e8k|y|−8kπR ,

(2.12)
where we conveniently introduced the fermion overlap function

F (cLi , cRj )≡
√
−gf (0)

Li
(y)f (0)

Rj
(y)=kπR

√
(1− 2cLi)(1− 2cRj )

(e(1−2cLi )πkR−1)(e(1−2cRj )πkR−1)
e

(−cLi−cRj )k|y|
,

(2.13)
product of the 5D profiles for the zero modes of the fermion fields, f (0)

Li
and f

(0)
Rj

, with
f = u, d, e and the factor

√
−g included. This shows that the left-diagonalization matrices

V u,d,e
L for the up-quark, down-quark and charged lepton sectors, respectively, are identical

and equal to the unitary trimaximal mixing matrix [47],

V u,d,e
L = U(ω) =

1√
3

 1 1 1
1 ω ω2

1 ω2 ω

 . (2.14)

This diagonalization property of mass matrices is referred to as “form diagonalizabil-
ity” [60]; in this case the mixing angles are independent of the mass eigenvalues. One
can easily see that, at this order and due to the above A4 assignments, the Φ VEV of
eq. (2.11) forces the CKM matrix to be the identity:

VCKM = V u†
L V d

L = U(ω)†U(ω) = 1 . (2.15)

It also induces the breaking pattern

A4 → Z3
∼= C3 = {1, c, a}, (2.16)

where ∼= denotes “isomorphism”, see the appendix. The remnant Z3 flavor subgroup cycli-
cally permutes the three A4 triplet basis states with no change of signs, see eq. (A.1)
and [47]. The 1′ and 1′′ representations transform under this subgroup in the same way
they do under the full flavor group, A4. We will show below that, if the remnant Z3 symme-
try remains unbroken, the CKM matrix will remain trivial to all orders. A further breaking
is thus needed in order to produce deviations of the CKM matrix from unity. In [47] it was
first suggested that such small deviations can be generated by higher-order effects, able
to induce a relatively weak subsequent breaking of the residual Z3 flavor symmetry, i.e.
Z3 → nothing.
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Our main goal is to implement this idea in our setup to obtain a realistic CKM ma-
trix, without spoiling the results that will be obtained below for the neutrino and charged
lepton sector. It is for this purpose that we choose to use bulk flavons. The non vanishing
overlap between the profiles of Φ and χ allows for the presence of higher dimensional oper-
ators, which communicate the symmetry breaking pattern associated with 〈χ〉 to the quark
sector, as explained in section 3.2. On the other hand, having these profiles exponentially
localized on different branes, combined with the internal symmetries of the model, strongly
suppresses the mixed interaction terms in the scalar potential V (Φ, χ), thus allowing to ap-
proximately preserve the original alignment between the VEVs of these fields, as discussed
in section 5.

2.1 Leading order results in the neutrino sector

This is an immediate generalization to our model of the 4D derivation in [47] and the 5D
warped model with brane localized scalars on an interval in [39]. The neutrino Dirac mass
matrix is derived from the Yukawa term `LHνR in eq. (2.8). Using eq. (A.5), the 4D Dirac
mass matrix turns out to be proportional to the identity matrix

MD
ν = H0ỹ

D
ν 1 =

(
H0y

D
ν

Λ1/2
5D

∫ πR

−πR

dy

2πR
e4k(|y|−πR)F (c`L, cνR)

)
· 1 ≡ mD

ν 1 . (2.17)

In this equation ỹDν is the effective 4D coupling and yDν is dimensionless. The right-handed
neutrino bare Majorana mass matrix is similarly trivial, being MM

ν = M
∫
dy F (cνR , cνR) ·

1 ≡ M̃ 1. It is the coupling to the flavon χ that induces a non trivial pattern in the
neutrino mass matrix, with contribution

Mχ
ν = ỹχ

 0 χ3 χ2

χ3 0 χ1

χ2 χ1 0

 , ỹχ =
yχ

Λ1/2
5D

∫ πR

−πR

dy

2πR
(1− e4k(|y|−πR))F (cνR , cνR) , (2.18)

with χa, a = 1, 2, 3 the VEV components of eq. (2.9). We now follow [41–44, 47] and
assume the breaking pattern A4 → Z2 = {1, r2} induced by the choice of the χ VEV

χ1 = χ3 = 0, χ2 ≡ χ0 6= 0 , (2.19)

so that the full 6× 6 neutrino mass matrix in 4D becomes

M total
ν =



0 0 0 mD
ν 0 0

0 0 0 0 mD
ν 0

0 0 0 0 0 mD
ν

mD
ν 0 0 M̃ 0 Mχ

0 mD
ν 0 0 M̃ 0

0 0 mD
ν Mχ 0 M̃


, (2.20)
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where Mχ ≡ ỹχχ0, and M̃ and Mχ are in general complex. In the see-saw limit |M̃ |, |Mχ| �
mD
ν , and the effective 3× 3 light neutrino mass matrix is thus

Mν
L = −MD

ν

(
MM
ν +Mχ

ν

)−1
(MD

ν )T = −(mD
ν )2

M̃


M̃2

M̃2−M2
χ

0 − M̃Mχ

M̃2−M2
χ

0 1 0

− M̃Mχ

M̃2−M2
χ

0 M̃2

M̃2−M2
χ

 , (2.21)

whose diagonalization matrix is

V ν
L =

1√
2

 1 0 −1
0
√

2 0
1 0 1

 . (2.22)

The MNSP matrix, at this order, is then

VMNSP = V e†
L V ν

L = U(ω)†V ν
L =


2√
6

1√
3

0

− ω2
√

6
ω2
√

3
− e−iπ/6√

2

− ω√
6

ω√
3

e−5iπ/6
√

2

 , (2.23)

which is tribimaximal up to phases and in good agreement with the neutrino oscillation
data [46], as already concluded in [47, 61]. Notice that the Jarlskog invariant is vanishing
despite the presence of these phases, and consequently CP violation is absent at this order.

The bulk scalar fields χ and Φ, which are in charge of the symmetry breaking pattern
A4 → Z2 in the neutrino sector and A4 → Z3 in the charged-fermion sector, respectively
are peaked on different branes. Thus, the two distinct flavor symmetry breaking patterns
will be approximately, but not fully sequestered from one another, due to the bulk nature
of these fields. Thus, while the leading order lagrangian in eq. (2.8) does not allow for
a talking between the two sectors, higher dimensional operators will ensure the complete
breaking of the A4 flavor symmetry through the overlap of bulk scalar fields. It is these
effects that we are interested in, in order to account for a realistic CKM matrix.

Higher order effects were naturally divided into two classes [47], those which preserve
the flavor subgroups (Z2 or Z3) of each sector, call them “higher-order”, and those that
involve interactions between the two sectors, “cross-talk”. The former preserve Z3 in the
quark and charged lepton sectors, and Z2 in the neutrino sector. The latter communicate
Z3 breaking to the charged sector via χ, and Z2 breaking to the neutrino sector via Φ. In our
context, a further way to isolate the dominant contributions amongst all higher order terms
is to distinguish between brane localized interactions, UV or IR, and “cross-brane” interac-
tions induced by the overlap of the bulk profiles of Φ and χ. We will first show the pattern
of all dominant higher order corrections to the CKM and MNSP matrices, producing de-
viations from the trivial and tribimaximal forms, respectively. We will then estimate their
structure and size in our model and compare with existing results. We are mainly inter-
ested in the quark sector. The reason is that within our setup an almost realistic structure
for the CKM matrix can emerge with a fairly restricted choice of the parameters involved.
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3 Higher order and cross-talk corrections

We first consider charged fermions, to immediately show that higher order contributions
in the Z3-preserving sector, i.e. no cross-talk, leave unchanged the leading order result for
mass and mixing matrices, in particular V `

L = U †(ω) to all orders for charged leptons.
The leading order contribution comes from the operator in eq. (2.8) of the form

f̄LΦHfR. The only higher order corrections allowed in the Z3-preserving sector come
from the operators of the type f̄LΦnHfR. After breaking of A4, and since the VEV of Φ
is Z3 symmetric, Φ2 transforms as 1 + Φ. Given that only the A4 triplet part of Φn will
contribute, it is clear that the corrections to masses and mixings of the above operators to
all orders will be identical in structure to the leading order ones. This shows that the Z3

symmetry in the charged fermion sector will ensure V `,u,d
L = U †(ω) and thus prevent quark

mixing, so that the only way to allow for a non trivial CKM matrix is to further break Z3.
We assume V `

L = U †(ω) in the rest of this section, and postpone to sections 3.2 and 4.4
the analysis of the suppressed cross-talk Z3 violating contributions.

3.1 Cross-talk and cross-brane effects in the neutrino sector

We now identify all the A4 symmetric higher dimensional operators contributing to the neu-
trino sector in our model. These are obtained by additional insertions of the fields χ and Φ
into the leading order terms for neutrinos in eq. (2.8). Cross-talk is induced by all contribu-
tions involving Φ. We can already anticipate a pattern in the corrections. Given that the
VEV of χ is Z2 preserving, χ3 transforms effectively as χ under A4. Hence, the contribu-
tions of χm operators to the (1, 2), (2, 1), (2, 3) and (3, 2) entries of both the neutrino Dirac
and right-handed Majorana mass matrices will be zero to all orders. Analogously, since Φ2

transforms as 1+Φ, the contributions of Φ2n operators will be absorbed in the leading order
contributions, or effectively amount to the operator with one Φ insertion. In general, the
size of all higher order contributions will be suppressed with respect to the leading order by
powers of the relevant scales (V EV )n/Λn5D and by the amount of overlap of bulk profiles;
recall that χ is UV peaked, while H and Φ are IR peaked. Hence, a strong suppression is
induced by the small overlap in the interference of χ−Φ and χ−H. The complete higher
order contribution to the neutrino Dirac lagrangian can be written as follows

∆LDν =
1

Λ(6n+3m+1)/2
5D

[
(`LχmHνR)m≥1

∣∣
h.o.

+
(
(`LΦ2nHνR)n≥1 + (`LΦ2nχmHνR)m,n≥1

)∣∣
cross−talk

]
, (3.1)

where we separated the cross-talk terms from the rest. Notice that odd powers of Φ are
forbidden by the additional Z2 in G. It is immediate to obtain the following textures for
the above corrections to the neutrino Dirac mass matrix to all orders:

MD
ν

ỹDν H0
=

 1 0 0
0 1 0
0 0 1


∣∣∣∣∣∣∣
l.o.

+

 εχ11 0 εχ13

0 εχ22 0
εχ13 0 εχ∗11


∣∣∣∣∣∣∣
h.o.

+

 εΦ11 + ε̂11 εΦ2 + ε̂1 εΦ3
εΦ3 + ε̂2 εΦ11 + ε̂22 εΦ2 + ε̂2
εΦ2 εΦ3 + ε̂1 εΦ11 + ε̂ ∗11


∣∣∣∣∣∣∣
cross−talk

,

(3.2)
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where εχ11,22 ∼ O(χ2
0/Λ

3
5D), εχ13 ∼ O(χ0/Λ

3/2
5D ), εΦi , ε

Φ
ii ∼ O(Φ2

0/Λ
3
5D) and

ε̂i, ε̂ii ∼ O(Φ2
0χ0/Λ

9/2
5D ). Notice that in the above expression the coefficient εΦ11 can

be absorbed into a redefinition of ỹDν , and similarly the coefficients ε̂11 and ε̂22 can be
absorbed in εχ11 and εχ22. The Majorana mass matrix is corrected by the operators

∆LMν =
1

Λ(3m+6n−2)/2
5D

[
(χmνR(νR)c)m≥2

∣∣∣
h.o.

+
(
Φ2nχmνR(νR)c

)
m≥0,n≥1

∣∣∣
cross−talk

]
.

(3.3)
Using again the transformation properties of Φ2n and χm we obtain the following texture
for the Majorana mass matrix,

MM
ν =

 M̃ 0 Mχ

0 M̃ 0
Mχ 0 M̃


∣∣∣∣∣∣∣
l.o.

+

 ε′11 0 ε′13

0 ε′22 0
ε′13 0 ε

′∗
11


∣∣∣∣∣∣∣
h.o.

+

 0 ε̃1 + ε1 ε2
ε̃2 + ε2 0 ε̃2 + ε1
ε1 ε̃1 + ε2 0


∣∣∣∣∣∣∣
cross−talk

,

(3.4)
where ε

′
ij ∼ O(Mχχ

2
0/Λ

3
5D), ε̃i ∼ O(MχΦ2

0χ0/Λ
9/2
5D ) and εi ∼ O(MχΦ2

0/Λ
3
5D). Notice that

ε
′
13 can be absorbed into a redefinition of Mχ, while for simplicity we have neglected

diagonal contributions that redefine M̃ .
If we neglect cross-brane interactions, induced by the overlap of Φ, χ and H bulk

profiles, the corrected light neutrino mass matrix, Mν
L, once rotated to the basis of

diagonal charged leptons with U †(ω), and assuming all real input parameters, will be to
any order of the following form:

Mν
L → M̃ν

L =

 δ1 δ2 δ
∗
2

δ2 δ4 δ3

δ∗2 δ3 δ
∗
4


∣∣∣∣∣∣∣
no cross−brane

, (3.5)

where the entries δi are anyway complex due to the ω factors in U(ω)†. This matrix is
identical to the one obtained in [39]; this is not surprising, since their model is the limit
of our model when χ is confined to the UV brane, while Φ and the Higgs are confined to
the IR brane. One can easily verify that the above matrix is diagonalized with θ23 = π/4
and θ13 = 0, if δ2 and δ4 are real. We can conclude that for particular realizations of the
parameters, it is certainly possible that the leading order values θ23 = π/4 and θ13 = 0
remain protected from higher order brane-localized corrections, while in the most general
case they will be corrected by naturally suppressed contributions.

The most dominant cross-brane operator is `LχHνR. If the bulk mass of χ is vanishing,
this operator is suppressed only by εχ13, compared to the leading order Dirac mass term.
Keeping the perturbative expansion linear in each of the various ε′s, one can treat the
textures associated with each operator in an additive manner. Therefore, even before we
set the exact profile of H and χ and deal with all of the other operators, we can have a
good understanding of the deviations it induces to θ12, θ13 and θ23.

We now recall that in general the effective Majorana Mass matrix is a 3 × 3 complex
symmetric matrix and thus contains 12 parameters. These parameters are the 3 masses,
the 3 mixing angles and 6 phases, out of which 3 can be absorbed in the neutrino fields and
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the remaining are 2 Majorana and 1 KM phase. Notice also that, in general, the various
εχij of eq. (3.2) are complex. Thus, considering only the contributions of operators of the
form `Lχ

mHνR, the left-diagonalization matrix is now corrected to:

V ν
L =

 1 0 0
0 1 0
0 0 eiδ


 1/2(

√
2− ε2χ) 0 −(1/

√
2 + εχ)

0 1 0
1/
√

2 + εχ 0 1/2(
√

2− ε2χ)


 eiα1 0 0

0 eiα2 0
0 0 eiα3

 , (3.6)

where εχ ∼ O(χ0/Λ
3/2
5D ) stands for contributions from εχ13 and εχ11,22 in eq. (3.2) and we

have omitted terms of O(ε3χ) and higher. In particular, εχ13 ∼ ỹDν H0εχ and εχ11,22 ∼ ỹDν H0ε
2
χ.

The phases αi can be absorbed in a rotation of the neutrino fields, while the KM phase
δ, given by

δ = Arg(M̃ + |M̃ |εχ∗11 ))−Arg(M̃ + |M̃ |εχ11), (3.7)

will contribute to CP violation in neutrino oscillations. The MNSP matrix, to O(εχ),
acquires a simple structure

VMNSP = U(ω)†V ν
L =

1√
6

 (1 + eiαεχ)
√

2 (eiα − εχ)
(1 + ωeiαεχ)

√
2ω2 (ωeiα − εχ)

(1 + ω2eiαεχ)
√

2ω (ω2eiα − εχ)

 , (3.8)

where the middle column does not receive corrections. A non zero θ13 is generated, and
θ12 and θ23 deviate from their leading order bimaximal values. Defining θ = π/4 + εχ, the
Jarlskog invariant turns out to be

Im[V11 V
∗

12 V
∗

21 V22] =
√

3
18

(cos 2θ − sin 2θ sin δ) , (3.9)

where the Vij denote the entries of VMNSP.
To account for all possible deviations from tribimaximal mixing we should consider the

fully perturbed effective neutrino mass matrix to first order in all the ε’s defined in eqs. (3.2)
and (3.4). However, considering the scales and wavefunction overlaps associated with ε̂i
in eq. (3.2) and ε̃i in eq. (3.4), it is clear that their contributions are of characteristic
strength O(10−3). Consequently, the deviations from TBM induced by these effect are
negligible and actually below the model theoretical error. To complete our analysis, the
only contributions that need to be further studied are those encoded in εi of eq. (3.4) and
those associated with complex εΦi parameters in eq. (3.2). The resulting expressions for
the deviations induced by these effects turn out to be quite cumbersome, yet the largest
deviations are still almost an order of magnitude smaller than those described in eq. (3.8).
These contributions will anyway be taken into account in the estimations of section 4.4.

3.2 Cross-talk and cross-brane effects in the charged fermion sector

As suggested in [47], Z3 breaking cross-talk effects should produce deviations of the CKM
matrix from unity. The details of the cross-talk depend on the specific dynamics and in
our case on the wavefunction overlap of Φ and χ. After introducing the higher dimensional
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cross-talk operators for quarks, we will set the values of Φ, χ and H VEVs to obtain the
physical quark masses while maintaining the Yukawa couplings yui,di ' 1.

The higher dimensional 5D operators relevant for quark mixing are generically sup-
pressed by Λ7/2

5D . Schematically, they are of the form

QL uRH Φχ, QL u
′
RH Φχ, QL u

′′
RH Φχ,

QL dR H̃ Φχ, QL d
′
R H̃ Φχ, QL d

′′
R H̃ Φχ, (3.10)

The VEV of the UV peaked χ communicates Z3 breaking to the quarks through these opera-
tors, and they are suppressed by an amount δ ' O(χ0/Λ

3/2
5D ) compared to the leading order.

They are also suppressed by the small overlap between the bulk profiles of χ and φ, a sup-
pression that amounts to a multiplicative factor, slightly different for the various operators.

We focus on the A4 textures associated with the above operators and conveniently
disregard H in what follows, since it transforms trivially under A4. Each operator in
eq. (3.10) represents two independent A4 invariants; for example QL ΦχuR schematically
denotes the independent terms

[ (QL Φ )3s χ ]1 uR and [ (QL Φ )3a χ ]1 uR. (3.11)

Writing these terms according to the decomposition in the appendix, and after A4 breaking
by the VEVs in eqs. (2.11) and (2.19), we obtain the general corrections to the 4D quark
mass matrices, as also in [47]

∆Mu,d =

 xu,d1 xu,d2 xu,d3

0 0 0
yu,d1 yu,d2 yu,d3

 , (3.12)

where all entries are in general complex, and the leading order mass matrix is linearly
corrected to, q = u, d

Mq+∆Mq = U(ω)
√

3

 ỹq1v+(xq1+yq1)/3 (xq2 + yq2)/3 (xq3 + yq3)/3
(xq1 + ωyq1)/3 ỹ′q2v+(xq2+ωyq2)/3 (xq3 + ωyq3)/3
(xq1 + ω2yq1)/3 (xq2 + ω2yq2)/3 ỹ′′q3v+(xq3+ω2yq3)/3


≡ U(ω)V u,d

L

mu,d 0 0
0 mc,s 0
0 0 mt,b

V u,d†
R , (3.13)

with xi, yi ∼ O(ỹqivχ0/Λ
3/2
5D ). The left-diagonalization matrices are promoted to U(ω)V u,d

L ,
where V u,d

L are nearly diagonal for xqi ’s and yqi ’s small enough compared to the mass
eigenvalues ∼ ỹv. Consequently, the CKM matrix will be given by

VCKM =
(

[U(ω)V u
L ]† [U(ω)V d

L )]
)

= (V u†
L V d

L ) 6= 1. (3.14)

There should be enough freedom in V u,d
L to fit the observed CKM matrix, while still

explaining why it is nearly the identity. However, it is not obvious that an appealing

– 13 –



J
H
E
P
0
8
(
2
0
1
0
)
1
1
5

solution can be found, that is an economical one, satisfying all perturbativity constraints
with a minimal amount of fine tuning. To account for the more detailed features of the
CKM matrix, like the hierarchy of θ12, θ23 and θ13, we will first obtain the effective 4D
couplings of the above operators, xu,di and yu,di , in terms of the 5D ones, x̃u,di and ỹu,di .
Secondly, we search for the minimal number of parameter assignments possible, in order
to obtain a realistic CKM matrix.

At this point, with all scales fixed in the quark sector, we will need to estimate the
size of the analogous cross-talk effects back in the charged lepton sector, mediated by
operators of the form `LΦHχeR(e′R, e

′′
R), and the way they affect the neutrino mixing

matrix. Clearly, we want to preserve the appealing neutrino mixing pattern described in
the previous section, at least within the 1σ range of the experimental values for the neutrino
mixing angles [46]. The maximal deviations from TBM will be discussed in section 4.4.

4 Numerical results for fermion masses and mixings

We first proceed to set all VEVs and mass scales, according to the observed mass spectrum
and neutrino oscillation data. Once these scales are set, we will be able to quantify the
various higher order contributions, starting from the quark sector.

We take the fundamental 5D scale to be k ' Λ5D 'MPl, where MPl ' 2.44×1018 GeV
is the reduced Planck mass. To keep the scale of the IR brane in reach of future collider
experiments, but satisfying the constraints from the observed S and T parameters, we
will always use values around kπR ' 34, such that the mass of the first KK excitation
is of a few TeV. It is natural to expect all of the scalars in our theory, being bulk fields,
to acquire a VEV of order MPl. Using the known mass of the W boson we can set the
amplitude of H in terms of the 5D weak gauge couplings to be H0 = 0.396M3/2

Pl .
By exploiting the warped geometry, we can match all the observed 4D fermion masses

by taking the bulk fermion parameters cq,l,ν to be all of order one, a well known pleasing
feature of the warped scenario [7–9]; a large mass hierarchy is seeded by a tiny hierarchy
of the c parameters.

In this setting, fermion masses are determined by the overlap integrals in the
corresponding Yukawa terms, involving the fermion zero mode profiles and the scalar
VEV profiles of eqs. (2.9) and (2.13). Therefore, if we take the 5D Yukawa couplings to
be universal and set them to one, all bulk parameters can be matched to the observed
mass spectrum. We remind the reader that there is only one bulk parameter cq,lL for each
left-handed quark and lepton doublet, being it a triplet of A4. Also, the cq,lL are essentially
free parameters, since we can always set the mass of each fermion by tuning the bulk mass
of the corresponding right handed A4 singlet. For the same reasons, the scalar VEV Φ0 is
essentially also a free parameter and we set it to be Φ0 = 0.577M3/2

Pl . However, all fermion
zero mode wave functions associated with the various c parameters are still constrained
by a few important perturbativity bounds [17–19] and by precision measurements. The
most stringent constraint is on the quark left-handed bulk parameter cqL and comes from
the bottom sector, in particular the combined best fits for the ratio of the Z-boson decay
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width into bottom quarks and the total hadronic width R0
b , the bottom-quark left-right

asymmetry, Ab, and the forward-backward asymmetry, A0,b
FB [62].

4.1 The quark and charged lepton sector

A thorough comparison of the combined best fits for R0
b , Ab, A

0,b
FB with the tree-level

corrections to the Zbb̄ couplings in the minimal (non custodial) RS model can be found
in [54], while the case of PLR custodial symmetry and extended PLR has been recently
considered [56]. These analyses2 show that the allowed window for new physics corrections
to the SM prediction — and consequently the window for the corresponding bottom
bulk parameter cbL — is severely constrained by the Zbb̄ best fits, unless an extended
custodial symmetry such as PLR custodial, or extended PLR custodial is in place. The
model considered here is an intermediate example, which embeds non-extended custodial
symmetry, and it is thus expected to be subject to constraints on the left-handed profile
cqL more severe than in the PLR custodial case and possibly close to the minimal RS
model. On the other hand, the model also differs from the cases analyzed in [54, 56] in
two respects. The additional A4 flavor symmetry might modify the non orthonormality
properties of bulk fermions and eventually suppress contributions due to mixing of zero
modes with KK states. Secondly, a bulk Higgs instead of a brane localized Higgs generally
allows for further suppressions via overlap in the presence of mass insertions. We defer to
future work the analysis of these two aspects in the context of Zbb̄.

For the purpose of model building we provide here an approximate estimate of the
allowed range for cqL in our model, at tree level and in the ZMA, based on the recent
calculations in [54, 56]. We correct the contributions to the Zbb̄ couplings gbL(R) in the

minimal RS model of [54], with the dominant ωbL,RZ 6= 1 corrections due to the presence of
custodial symmetry [56]. Analogously to [54], we conveniently define the functions f(c) in
terms of the canonically normalized fermion zero mode wave functions f (0)(y) of eq. (2.13)
evaluated at the IR brane

f (0)(y = πR) =
√
kπR e

3
2
kπR f(c) . (4.1)

We obtain

gbL =
(
−1

2
+
s2
w

3

)[
1−

m2
Z

2M2
KK

f2(cqL)
3− 2cqL

(
ωbLZ · kπR−

5− 2cqL
2(3− 2cqL)

)]

+
m2
b

2M2
KK

 1
1 + 2cb

(
1

f2(cb)
− 1 +

f2(cb)
3− 2cb

)
+
∑
i=d,s

|(Yd)3i|2

|(Yd)33|2
1

1 + 2ci
1

f2(cb)


gbR =

s2
w

3

[
1−

m2
Z

2M2
KK

f2(cb)
3− 2cb

(
ωbRZ · kπR−

5− 2cb
2(3− 2cb)

)]

−
m2
b

2M2
KK

 1
1+2cqL

(
1

f2(cqL)
−1+

f2(cqL)
3−2cqL

)
+
∑
i=d,s

|(Yd)3i|2

|(Yd)33|2
1

1+2cqL

1
f2(cqL)

 (4.2)

2Notice that the analyses of [54, 56] take into account contributions induced by the complete summation

over KK states and their non orthonormality. These corrections were not considered in previous bounds

and turn out to be numerically significant in the case of Zbb̄ constraints.
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Figure 1. An illustrative example of the new physics contribution δgbL as a function of cqL, with
MKK = 1.8 TeV, the down-type 5D Yukawa couplings in eq. (4.2) set to 1 in magnitude and the
right-handed bulk parameters set to the conservative value cb = 0.58, and cd = cs = 0.5. The
shaded horizontal band corresponds to the 99% probability interval allowed by the best fit values
for gbL(R) with the SM prediction computed at mH = 150 GeV as in [54, 56].

where ωqZ = c2
w(T 3q

L + T 3q
R )/(T 3q

L − s2
wQq) in the case of equal SU(2)L and SU(2)R gauge

couplings. It is instructive to compare the values for ω
bL,R
Z in the three different se-

tups. The minimal RS model has ωbLZ = ωbRZ = 1, the PLR custodial has ωbLZ = 0
and ωbRZ = 3c2

w/s
2
w ∼ 10 for s2

w ≈ 0.23, while the custodial case as in our model has
ωbLZ = c2

w/(1−2s2
w/3) ∼ 0.9 and ωbRZ = −3c2

w/2s
2
w ∼ −5. Notice that the latter is negative,

and would go in the right direction to solve the A0,b
FB anomaly. We have however verified that

its numerical impact is limited, as it is its positive contribution in the minimal RS setup.
In the estimate provided by eq. (4.2) we have disregarded corrections to the mb

dependent terms due to the admixture of the KK partners in the zero modes of the
SU(2)R doublets; the exact form of the corrections depends on the symmetries of the
model, also A4 flavor in our case, and weak isospin assignments of bulk fermions. The mb

dependent contribution as in eq. (4.2) is strongly dependent on the right-handed bottom
bulk paramater cb. However, it can be effectively suppressed in the particular case of
extended PLR custodial symmetry due to degeneracy of right-handed profiles [56].

We used the combined best fit values for the couplings (gbL)exp = −0.41918
and (gbR)exp = 0.090677 [54] and the predicted SM values (gbL)SM = −0.42114 and
(gbR)SM = 0.077345 [62] at the reference Higgs mass of 150 GeV, to constrain the new
physics contributions defined as δgbL(R) = gbL(R) − (gbL(R))SM. We disregarded the new
physics corrections to the SM contributions in the light sector as in [54, 56].

For a Higgs mass of 150 GeV, a KK scale MKK = 1.8 TeV, and imposing a 99% prob-
ability interval for the left-handed coupling given by −0.424 . gbL . −0.419, we obtain the
constraint cqL > 0.35, as it can be inferred from figure 1. Notice that eq. (4.2) has a strong
dependence on cb and only a mild dependence on cd,s. Thus, lowering the value of cb towards
0.5 will allow for significantly larger windows for cqL, at the price of higher Yukawa couplings.
The corrections to the SM prediction for gbR satisfy δgbR . 10−4 in the region of interest and
have been safely neglected. The perturbativity constraint on the 5D top Yukawa coupling
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|yt| . π, together with the matching to the MS top mass at the KK scale mt(1.8 TeV) '
140 GeV [63] and the constraint ct & −0.2,3 implies instead the upper bound cqL < 0.42.
Notice that by requiring |yt| . 4π/

√
N [64], with N = 1, the bound on cqL changes signif-

icantly to cqL < 0.52. Hence, one obtains 0.35 . cqL . 0.42 in the most conservative case.
As expected, the allowed minimal value for cqL is severely constrained by the Zbb̄ best fits.

For cqL = 0.40, all the right-handed quark bulk parameters are chosen in order to yield
the MS quark masses at the KK scale of 1.8 TeV. Their values are cu = 0.790, cd = 0.770,
cs = 0.683, cc = 0.606, cb = 0.557 and ct = −0.17, corresponding to mu = 1.5 MeV,
md = 3 MeV, ms = 50 MeV, mc = 550 MeV, mb = 2.2 GeV and mt = 140 GeV. All 5D
Yukawa couplings have been set to 1 in magnitude, while the top Yukawa coupling slightly
breaks universality with |yt| ' 2.8.

It should be added that lower values for cqL become accessible for a KK scale higher
than MKK = 1.8 TeV. On the other hand, a KK scale as low as 1 TeV would force cqL & 0.45
and the top Yukawa coupling to values |yt| ∼ 7. Another possibility is the one of a heavier
Higgs. A Higgs mass larger than 150 GeV would bring the model prediction closer to the
best fit values for gbL and gbR, thus allowing for a larger range for cqL. For example, a mass
mH = 300 GeV would imply a lower bound cL & 0.32, within our estimate and using
the shifts ∆gbL = 1.77 · 10−3 ln (mH/150GeV) and ∆gbR = 0.92 · 10−2 ln (mH/150GeV) [56]
induced by mH 6= 150 GeV. However, a heavier Higgs mass in the custodial setup easily
induces conflicts with electroweak precision measurements and a careful estimate of the
actually allowed range of values for mH should be produced in each version of the custodial
setup. We defer this point to future work on phenomenological applications.

For the charged leptons we make the choice clL = 0.52, ce = 0.803, cµ = 0.635 and
cτ = 0.5336, which reproduce the experimental value of the corresponding masses me =
0.511 MeV, mµ = 105.6 MeV and mτ = 1.776 GeV.

4.2 The neutrino sector

To obtain the neutrino masses we first recall the leading order structure of the light neutrino
mass matrix after see-saw, Mν

L in eq. (2.21), for which the eigenvalues are given by:

Mdiag.
L = −(mD

ν )2 ×

[
1

M̃ +Mχ

,
1
M̃
,

1
M̃ −Mχ

]
. (4.3)

We now write the neutrino mass-squared splittings, for afterwards we would like to impose
the observed values of ∆m2

atm and ∆m2
sol, in order to constrain the possible choices of M̃

and Mχ. Given

∆m2
12 ≡ |m1|2 − |m2|2 =

∣∣∣∣(mD
ν )2

(M̃)

∣∣∣∣2 [ 1
(1 + q)2

− 1
]
, (4.4)

∆m2
23 ≡ |m2|2 − |m3|2 =

∣∣∣∣(mD
ν )2

(M̃)

∣∣∣∣2 [1− 1
(1− q)2

]
, (4.5)

3This constraint ensures that the contribution through mixing from b̃, the partner of the SU(2)R top, is

sufficiently suppressed in Zbb̄ [11, 17–19].
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where q = Mχ/M̃ , |∆m2
12| = ∆m2

sol and |∆m2
23| = ∆m2

atm, we obtain the following cubic
equation for q:

q3 − 3q − 2
(
x− 1
x+ 1

)
= 0 , (4.6)

where x = ∆m2
sol/∆m

2
atm for |q| < 2, and x→ −x for |q| > 2. Given q, the ratio M̃/(mD

ν )2

can be extracted either in terms of ∆m2
atm or ∆m2

sol

M̃ =
(mD

ν )2√
∆m2

sol

×
(∣∣∣∣ 1

(1 + q)2
− 1
∣∣∣∣)−1/2

. (4.7)

Imposing the measured values [46] for the mass splittings, ∆m2
sol ' 7.67 × 10−5eV2

and ∆m2
atm ' 2.39 × 10−3eV2, we find four possible solutions to the above equation,

q ' {−2.02,−1.99, 0.79, 1.2}, where the first two correspond to inverted hierarchy, while
the second two correspond to normal hierarchy. In addition, once we set cνR , we can
constrain M̃ and Mχ from the same data. This is a nice feature of the light neutrino mass
matrix obtained in all A4 models with similar assignments [39, 41–44, 47]. Since at this
stage only the overall light neutrino mass ratios, (mD

ν )2/M̃ and Mχ/M̃ are constrained by
the observed splittings, we choose not to set cνR and extract Mχ from the quark mixing
data. It will be possible afterwards to set cνR to a natural value ∼ 1/2 to match the
neutrino mass spectrum.

4.3 Obtaining the CKM matrix and fixing the scale

We now analyze the CKM matrix resulting from the contributions introduced in eq. (3.13).
Using standard perturbative techniques, the left diagonalization matrix V u,d

L is obtained
by the unitary diagonalization of (M+∆M)u,d(M+∆M)†u,d, and the right diagonalization

matrix V u,d
R is analogously obtained by the unitary diagonalization of (M + ∆M)†u,d(M +

∆M)u,d. The entries of the CKM matrix are then derived in terms of the xu,di , yu,di
parameters defined in eq. (3.13), to leading order in perturbation theory. The up and
down left-diagonalization matrices turn out to be:

V q
L =

 1 m−1
2 (xq2 + yq2) m−1

3 (xq3 + yq3)
−m−1

2 (x̄q2 + ȳq2) 1 m−1
3 (xq3 + ωyq3)

−m−1
3 (x̄q3 + ȳq3) −m−1

3 (x̄q3 + ω2ȳq3) 1

 , (4.8)

with q = u, d, mi = mui,di , and x̄(ȳ) stands for the complex conjugate. In the above
matrices, for simplicity, we have redefined the xu,di and yu,di to absorb the relative factor
of 1/

√
3 compared to the unperturbed mass eigenvalues mi =

√
3vỹui,di . Furthermore, we

have omitted contributions that are suppressed by quadratic quark mass ratios and still
linear in xu,di , yu,di . Terms of this kind will be included in the complete expressions derived
below, for each of the interesting CKM matrix elements.

It is now straightforward to extract the estimations for the upper off-diagonal elements
of the CKM matrix out of V u†

L V d
L , in order to eventually match the three mixing angles
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and the CP violating phase δ13
CKM. To leading order in xi, yi, these elements turn out to be

Vus ' −V ∗cd '
mu(x̄u1 + ω2ȳu1 ) +mc(xu2 + yu2 )

m2
u −m2

c

+
md(x̄d1 + ω2ȳd1) +ms(xd2 + yd2)

m2
s −m2

d

, (4.9)

Vcb ' −V ∗ts '
mc(x̄u2 + ωȳu2 ) +mt(xu3 + ωyu3 )

m2
c −m2

t

+
ms(x̄d2 + ωȳd2) +mb(xd3 + ωyd3)

m2
b −m2

s

, (4.10)

Vtd ' −V ∗ub '
mu(x̄u1 + ωȳu1 ) +mt(xu3 + yu3 )

m2
u −m2

t

+
md(x̄d1 + ωȳd1) +mb(xd3 + yd3)

m2
b −m2

s

, (4.11)

where it is important to observe that the first equality is exact to leading order in xi and yi.
The diagonal elements of the CKM matrix remain unchanged at this order and equal to one.

We recall that xu,di and yu,di correspond to the (1i) and (3i) entries of ∆Mu,d in the
interaction basis, respectively. This tells us which fermionic wave function overlaps enter
the integral for each of the above parameters. For the 4D couplings we thus obtain

xu,di (yu,di ) =

(
H0Φ0χ0

Λ7/2
5D

∫ πR

−πR

dy

2πR
F (cqL, c

u,d
i )e8(k|y|−πR)(1− e4(k|y|−πR))

)
x̃u,di (ỹu,di ) .

(4.12)
To narrow down the parameter space, we choose all the x̃u,di (ỹu,di ) to be universal and equal
to one in magnitude, while relative phases between these parameters will be allowed. Hence,
due to the mass hierarchy of the quarks, which keeps the denominators in eqs. (4.9)–(4.11)
proportional to just one quark mass to a good approximation, the resulting corrections to
each of the CKM matrix elements are of the generic form,

mu,d
i (xu,di + ωnyu,di )

(mu,d
j )2 − (mu,d

k )2
⇒

((mu,d
i )2Cχf

i
χ)(x̃u,di + ωnỹu,di )

±max[(mu,d
j )2, (mu,d

k )2]
, (4.13)

with n = 0, 1, 2, and where Cχ = χ0/M
3/2
Pl , f iχ = 4/(12 − cqL − c

u,d
i ) and i = j or k. Let

us first set Cχ according to the experimental value of Vus; using eq. (4.9) and taking into
account eq. (4.13) we obtain:

Vus '
(

(x̃d2 + ỹd2)fsχ − (x̃u2 + ỹu2 )f cχ +O(m2
d/m

2
s)
)
Cχ ' 0.2257⇒ Cχ ' 0.155. (4.14)

in which we have fixed x̃d2, ỹd2 , x̃u2 and ỹu2 to be 1 in magnitude, with a relative phase, δu2 = π,
between the contributions from the up and down sectors. We want to see if the above value
of Cχ together with a minimal number of relative phases between the remaining x̃ and ỹ

parameters, are enough to account for the magnitudes of the remaining observed CKM
elements. Yet, we first want to check the consistency of the scale associated with the above
value of Cχ with the neutrino mass splittings and the bare Majorana mass scale. It turns out
that for cνR = 0.408 it is possible to satisfy the constraints in both sectors, namely to have a
realistic Vus, while at the same time having a realistic neutrino mass spectrum with a normal
or inverted hierarchy. At this level the neutrino mixing matrix is obviously tribimaximal
with small deviations, as we saw in section 3. The numerical results are reported in table 1,
once the scales are fixed by Cχ. The dominant contributions to Vcb (and Vts) are given by

Vcb '
(

(x̃d3 + ωỹd3)f bχ − (x̃u3 + ωỹu3 )f tχ +O(m2
s/m

2
b)
)
Cχ ' 0.004⇐ (δu3 = 0) . (4.15)
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q m1 m2 m3 M̃/MPl Cχ

−2.02 50.7 51.8 17.1 −0.077 0.155

−1.99 52.3 51.8 17.3 −0.077 0.155

0.79 5.8 10.5 50 0.202 0.155

1.19 4.3 9.4 49.4 0.135 0.155

Table 1. Approximate numerical values of the neutrino masses and relevant UV scales, where
cνR

= 0.408 has been chosen to match the four solutions for q ≡ Mχ/M̃ to eq. (4.6) with the
constraint Cχ = 0.155 arising from Vus. The masses are given in units of 10−3 eV.

Up till now, we introduced only one phase, δu2 , to match Vus (and Vcd), but failed to match
Vcb (and |Vts|) to their central experimental values |Vts| ' |Vcb| = 0.0415. The leading
order contribution to Vub, without any relative phase assignments, and with the x̃u,d3 ’s and
ỹu,d3 ’s set to 1, is

Vub '
(

(x̃d3 + ỹd3)f bχ − (x̃u3 + ỹu3 )f tχ +O(m2
d/m

2
b)
)
Cχ ' 0.007⇐ (δu3 = 0) . (4.16)

We see that Vub, and thus Vtd, turn out correctly to be of order λ3
CKM, but still outside

the experimental error.
The next to leading order corrections to the various CKM elements enter at

O((xu,di , yu,di )2). In general, one may still expect them to modify the relatively small values
of Vub and Vcb, especially in the presence of strong cancellations at leading order, and given
that each independent contribution is effectively suppressed by f iχCχ ≈ 0.05 compared to
the corrections linear in xu,di and yu,di . We are going to elaborate on this possibility once we
made an attempt to obtain an almost realistic CKM matrix, using the first order results.

The only way to obtain a realistic prediction for the independent magnitudes of Vub

and Vcb, and the related values of |Vtd| and |Vts|, is to break the universality assumption
for the Yukawa couplings, x̃u,d3 , ỹu,d3 and find their values that match the experimental
data. However, we are interested in the smallest possible deviations from the universality
assumption which assumes all of the Yukawa couplings to be of order one, so that
contributions to various flavor violating processes, which are present in any RS-flavor
setup [15], will not be arbitrarily modified. Therefore, while trying to find the minimum
number of assignments in the x̃u,d3 , ỹu,d3 parameter space, we still require small deviations,
in general complex, from the O(1) universality assumption. It is obvious that assignments
in terms of one parameter will yield results proportional to those of eq. (4.15) and (4.16),
and will hence fail again to account for realistic values of Vcb and Vub. The minimal viable
choice consists of at least 2 parameter assignments. Namely, we will have to break the
universality assumption for two out of the four x̃u,d3 , ỹu,d3 parameters.

In addition the only choice of parameter assignments that maintains all coefficients of
O(1) is to break universality for x̃u3 and ỹd3 , while setting x̃d3 = ỹu3 = 1. Solving eqs. (4.16)
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and (4.15) for x̃u3 and ỹd3 we obtain:

x̃u3 ' 0.67− 0.19i, ỹd3 ' 0.60− 0.23i . (4.17)

These parameters are almost degenerate, in particular if one considers the overall accuracy
of the zero mode approximation, and substituting these values in eqs. (4.15) and (4.16),
we obtain

|Vcb| = 0.0415 |Vub| = 0.0039 , (4.18)

which are the central experimental values [63]. Interestingly, we are able to match also the
CP violating phase δ13, using the same assignment. We find it to be δ13 ' 1.2, which is well
within the experimental error.4 Obviously, at this order |Vts| = |Vcb| holds exactly, and
this gives a value for |Vts| close to the central experimental value |Vts| = 0.0407. We also
obtain |Vtd| = |Vub|, and thus fail to match the central experimental value |Vtd| = 0.0087.
Notice, however, that corrections of the size of the smallest CKM entries, i.e. O(λ3

CKM) are
below the model theoretical error induced by the zero mode approximation. A realistic
value for Vtd can easily arise from the subleading corrections in x̃u,di and ỹu,di and from
higher dimensional operators beyond the zero mode approximation. We remind that the
corrections quadratic in x̃u,di and ỹu,di are generically suppressed by a factor f iχCχ ≈ 0.05
with respect to the linear contributions.

We have thus shown that at leading order in the VEV expansion the model predicts
VCKM to be the unit matrix, a rather good first step in the description of quark mixing.
At the next to leading order, cross-brane and cross-talk operators induce deviations from
unity, parametrized in terms of twelve complex parameters x̃u,di and ỹu,di , with i = 1, 2, 3.
We have shown that, linearly in these parameters, realistic values of the CKM entries can
be obtained within the model theoretical error in a finite portion of the parameter space,
with all the x̃i and ỹi of order one and two non zero relative phases; however at this order,
no corrections to the diagonal unit entries is produced and the two smallest entries Vub

and Vtd are degenerate.
We notice that the possibility of producing hierarchical CKM entries, of order λCKM,

λ2
CKM and λ3

CKM, with all parameters of order one stems from the presence of built-in
cancellations induced by the hierarchical masses. The presence of the A4 induced phase
ω also produces a pattern in the corrections. In this framework, subleading corrections of
order (x̃u,di , ỹu,di )2 and contributions beyond the ZMA, must be responsible for the deviation
from one of the CKM diagonal entries and the non degeneracy of Vub and Vtd. The first is
of order 10−2, the latter of order 10−3, hence a cancellation pattern must again be in place.

It is instructive to compare this A4 pattern with other flavor symmetry groups, in
particular T ′ [48–53]. The Wolfenstein parametrization would suggest the existence of an
expansion parameter to be naturally identified with λCKM, offering an elegant and simple
description of quark mixing in the standard model. On the other hand, flavor models
based on otherwise appealing discrete flavor symmetries such as A4 and T ′ must rely
on more complicated patterns to produce a realistic CKM matrix. In the case of T ′ one

4At a higher level of accuracy one should obviously satisfy the full set of constraints implied by the

measured Jarlskog invariant.
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needs to postulate a hierarchy of Yukawa couplings to distinguish between O(λCKM) and
O(λ2

CKM) entries, and a hierarchy of specific VEVs to induce the splitting between Vub

and Vtd. Similar hierarchies can in principle also be postulated in the A4 case, at the price
of an increased fine tuning of the input parameters.

4.4 Estimation of cross-talk and cross-brane contributions in the lepton sector

To complete our analysis we want to ensure that the deviations from TBM induced
by cross-talk operators of the characteristic forms `LΦHχeR(e′R, e

′′
R) and `LHχνR are

suppressed and keep the predictions for the neutrino mixing parameters within the 2σ
range of the experimental error. We first consider the cross-brane operator ¯̀

LHχνR,
already explored in section III. Recall that deviations from θ13 = 0 and θ23 = π/4 are
induced only for complex εχij parameters, and therefore we expect the maximal deviations
from TBM when they are purely imaginary. All said, we estimate the magnitude of the
εχij coefficients based on the results of the previous section. As we are interested only in
the dominant contributions, associated with one insertion of χ, we are only interested in
εχ13 as defined in eq. (3.2). This provides

εχ13 ' ỹνH0Cχ
4

8− ceL − cνR
⇒ εχ ' 0.07 , (4.19)

where εχ was introduced in eq. (3.6). Given εχ we also obtain εχ11. Taking its phase to
be π/2 we get the largest possible contribution to the phase δ defined in eq. (3.7) to be
δ ' −0.11. Using eq. (3.8) we can now estimate the deviations from TBM arising from the
operator (1/Λ2

5D)`LHχνR in the worst scenario where its coefficient is purely imaginary.
These turn out to be

∆θ13 ' 0.05 ∆θ23 ' 0.04 ∆θ12 ' 0 . (4.20)

All of these deviations are within 1σ from their experimental values. The other class of
operators (1/Λ7/2

5D )`LΦHχeR(e
′
R, e

′′
R) have the same structure as the operators in charge

of quark mixing. The perturbative diagonalization procedure can thus be carried out
as it is done in the quark sector, in order to determine the deviations from U(ω) of the
rotation matrix for the left handed charged leptons. Generically, these operators will
induce perturbations to the mass matrix in the form of eq. (3.13) and with characteristic
strength ε` ' Cχfχ(ceL, c`) ' 0.028, which is of the same order of the model theoretical
error. We could have proceeded to explicitly write all of these corrections as we did for
the quarks, yet since the structure is practically identical in both cases we can easily
deduce the effect of these small terms. For example, in analogy with eqs. (4.14) and (4.16)
and using no additional phase assignments for x̃ei and ỹei , we get that the contribution
to ∆θ13 is vanishing, while the contributions to ∆θ12 and ∆θ23 are of approximate
strength |∆θ12| ' |∆θ23| ' 0.04, comparable to the model theoretical error. Higher order
cross-talk operators are not considered, as their contribution lies safely below 1%. We
can conclude that the most significant deviations from TBM induced by cross-talk and
cross-brane operators on the three mixing angles stay within the experimental errors for
these quantities. This can be obtained without making any further assumption on the
parameters of the model and maintaining all of them naturally of order one.
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5 Vacuum alignment

We are still left with one important challenge: to ensure that the alignments of the VEVs
〈Φ〉 and 〈χ〉 in eqs. (2.11) and (2.19) are approximately preserved also in the presence of
higher order corrections. These VEV patterns were the key ingredient in obtaining all of
the above results. In this section, we briefly discuss the challenge and suggest possible
solutions. It is obvious that in the scenario of [39], which is the limit of our model when
χ and Φ are strictly localized on the UV and IR brane respectively, the vacuum alignment
problem is eliminated tout court, as Φ and χ are completely sequestered. In our model, the
cross-brane interactions between Φ and χ are essential in order to obtain realistic results
in the quark sector. The question is whether their modifications to the scalar potential can
be sufficiently suppressed, while still protecting the results in the lepton and quark sectors.

The complete G-invariant scalar potential in Φ and χ up to quartic order is displayed
below, and we conveniently separate its terms as follows

V = V (Φ) + V (χ) + V (Φ, χ), (5.1)

with the single contributions also derived in [47]

V (Φ) = µ2
Φ(ΦΦ)1 + λΦ

1 (ΦΦ)1(ΦΦ)1 + λΦ
2 (ΦΦ)1′(ΦΦ)1′′

+λΦ
3 (ΦΦ)3s(ΦΦ)3s + λΦ

4 (ΦΦ)3a(ΦΦ)3a
+iλΦ

5 (ΦΦ)3s(ΦΦ)3a. (5.2)

V (χ) = µ2
χ(χχ)1 + δχ(χχχ)1 + λχ1 (χχ)1(χχ)1 + λχ2 (χχ)1′(χχ)1′′

+λχ3 (χχ)3(χχ)3. (5.3)

V (Φ, χ) = δΦχ
s (ΦΦ)3sχ+ iδΦχ

a (ΦΦ)3aχ+ λΦχ
1 (ΦΦ)1(χχ)1

+λΦχ
2 (ΦΦ)1′(χχ)1′′ + λΦχ∗

2 (ΦΦ)1′′(χχ)1′

+λΦχ
3 (ΦΦ)3s(χχ)3 + iλΦχ

4 (ΦΦ)3a(χχ)3 . (5.4)

Notice that the additional interactions with the Higgs field V (H,Φ, χ) can be omitted
in this context, since H is a singlet under A4 and gives rise to contributions that can
be absorbed in the corresponding coefficients of eq. (5.4). The self interaction terms
are assumed to be confined on the two branes as in [59]. It is then easy to check that
eq. (2.11) is a global minimum of V (Φ), and that eq. (2.19) is a global minimum of
V (χ). This situation drastically changes once interactions between Φ and χ are switched
on via V (Φ, χ). The problem is that the extremal conditions yield a larger number of
independent equations than there are unknown VEVs, as was demonstrated in [65].

To solve this problem extremely hierarchical fine tuning has to be imposed on the
various parameters of the scalar potential. The most direct approach to avoid this
fine tuning, adopted by [65] and many others, was to prohibit the problematic V (Φ, χ)
interaction terms by construction. These models are usually supersymmetric and make
use of the Froggatt-Nielsen (FN) mechanism [66] to explain the fermion mass hierarchy.
Explaining the observed features of fermion mixings within these setups usually requires a
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significantly larger flavon content, and additional higher permutation symmetries, typically
Zn, in order to eliminate problematic terms from the superpotential. The drawback is
that one usually ends up with a large parameter space without avoiding the need to
make ad hoc assumptions to account for experimental data. In this case, using no further
assumptions, we can try to exploit the suppressed overlap of the flavons bulk profiles
in order to reduce the impact of the interaction terms in eq. (5.4) while preserving the
results in the quark and lepton sectors. The most problematic cross-brane term is δΦχΦ2χ,
which is not eliminated by the additional Z2 symmetry we imposed. We know that this
term is typically suppressed by an overlap factor aχ ' Cχ/3 ' 0.05 compared to the self
interaction term Φ2. If we switch on the bulk mass of χ, its VEV profile will become more
sharply localized on the UV brane, an effect that we can parametrize by a multiplicative
factor Cµχ = e−µχ in front of the original expression in eq. (2.9). This factor can easily
suppress the induced shift of the scalar VEV below the model theoretical error. The same
factor enters all the calculations performed so far, however its effect only amounts to
modify the numerical value of Cχ and accordingly, the matching of cνR . It turns out that
to make aχ = (1/3)CχCµχ smaller than the theoretical error we only need to suppress Cχ
by a factor of 1/2, which can be compensated by a global rescaling of the various xu,di and
yu,di parameters by at most a factor two, without breaking the universality assumption.
Quartic and higher V (Φ, χ) interaction terms are obviously further suppressed and lie
safely below the model theoretical error, originated by the zero mode approximation.

5.1 Alternative solutions by model modifications

We offer two alternative setups, in which the desired vacuum alignment is protected by
forbidding cubic mixed interaction terms, and allowing only for quartic (and higher)
interactions in V (Φ, χ). In the first suggested setup, we use an additional A4 singlet η and
modify the external Z2 symmetry into Z8. The singlet η is in charge of the bare Majorana
mass term. Assigning the Z8 charges of Φ, χ, H and η to be α4, with α = e2πi/8, we assign
the rest of the fields according to

(QL, u
′
R, u

′′
R, dR, d

′
R, d

′′
R)⇒ α4 , (`L, νR)⇒ α2 , (eR, e′R, e

′′
R)⇒ α6. (5.5)

The above assignments allow the presence of all the operators in the Yukawa lagrangian of
eq. (2.8), while they forbid the unwanted `LHΦνR and `LHχνR terms. Most importantly,
the dangerous cubic Φ2χ interaction term is also prohibited in this setting. The operators
in charge of quark mixing are now supplemented with an extra insertion of Φ to preserve
Z8, giving rise to the operators QLΦ2χuR(u′R, u

′′
R, dR, d

′
R, d

′′
R). However, we have an

extra source of quark mixing allowed by the above assignments, arising from cross-brane
operators of the form QLχH(uR, u′R, u

′′
R, dR, d

′
R, d

′′
R).

The latter will obviously dominate over the contributions of operators involving Φ2χ

interactions. This is clearly so, given that the above operators are of the same dimension as
the leading order operators in the Yukawa lagrangian of the quark sector. However, being
cross-brane terms, they will still be suppressed compared to the IR dominated contributions
of QLΦH(uR, u′R, u

′′
R, dR, d

′
R, d

′′
R). After the scale Cχ is set according to the experimental
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value of |Vus|, we are able to tell if this perturbative expansion is justified. Due to the Z3

preserving VEV of Φ and the Z2 preserving VEV of χ, the above operators involving χH
will generate the same kind of contributions as those involving ΦχH to the CKM elements.
However, the corrections induced by these operators will enter in the second row of the
up and down mass matrices in the interaction basis, differently from eq. (3.12). Each of
these contributions will be characterized by one coefficient which we define as au,dχ,i , where
i specifies the generation. When matching the observed magnitudes of the CKM elements
and the CP violating phase, δCKM

13 , it turns out that we still need a relative phase δud
χ,2 = π

between auχ,2 and adχ,2, to account for Vus. This results in Cχ ' 0.045, which in turn
validates the perturbative expansion, where εmod. ' Cχ/CΦ ' 0.045/0.577 ' 0.08 acts
as the small expansion parameter. The contributions to quark mixing arising from the
operators involving Φ2χ are suppressed by O(10−2) compared to the ones associated with
au,dχ,i . It turns out that we need two independent and non degenerate complex parameter
assignments for the above coefficients, in order to obtain an almost realistic CKM matrix
at leading order as in section 4.3. This means that, in total, we have 4 non degenerate
real parameters governing the mixing data in the quark sector, a less appealing situation
than the one with a Z2 extra discrete symmetry, where the two complex parameters turn
out to be degenerate to a good approximation.

The second solution we suggest is based on the simplifying assumption that the field
Φ can also play the role of the Higgs as in many previous works on A4 [41–44, 47, 67–69].
It is not clear, at this stage, to which extent this assumption can be justified in the warped
setup we use, however it seems possible to identify the lightest mode associated with Φ in
the 4D effective theory with the SM Higgs.

We again assign a Z8 discrete symmetry in this slightly simplified setup. Given that
Φ, χ, and η transform again as α4, we choose the other fields to transform according to

(QL)⇒ α4 , (νR)⇒ α2 , (`L, φ)⇒ α3 , (eR, e′R, e
′′
R)⇒ α , (5.6)

and importantly the scalar sector is now supplemented with an additional A4 singlet φ
which is in charge of the neutrino Dirac mass term. We naturally expect η and φ to be
UV and IR localized, respectively. All terms in the Yukawa lagrangian of eq. (2.8) are
still allowed by the above assignment with H being swallowed into Φ, and the Dirac mass
term for the neutrinos of the form `LφνR. The dominant higher order corrections in the
Dirac neutrino mass matrix arise from operators of the form `LφΦ2νR and `Lφχ

2νR, for
which the associated contributions were already inspected in section III. The dominant
higher order corrections to the heavy Majorana mass matrix will consist of χ3νR(νR)c and
Φ2ηνRν

c
R, for which the resulting textures were also inspected in the same section.

Turning back to the quark sector we see that the most dominant cross-talk interac-
tions, leading to quark mixing, are of the form QLΦ2χqu,dR and QLΦχ2qu,dR , both of which
give similar contributions to those described in section 3.2. Consequently, we can match
the CKM matrix as we already did in section 4. Differences will stem from redefinitions
of Φ0 and Cχ and consequent rescaling of fermion bulk masses. The resulting mixing data
in the quark sector will be now governed by x̃u,di , ỹu,di and z̃u,di , with the newly defined
z̃u,di parameters entering at the second row of the up and down mass matrices in the
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interaction basis. A matching of an almost realistic CKM matrix by 4 real parameter
assignments analogous to the one in section 4 can be performed, yet the parameter space
is still larger. As already said another possible drawback of this proposal may lie in the
identification of the 5D flavon Φ with the bulk Higgs.

We should also add that in both solutions offered above to protect the desired vacuum
alignment, the Gcust

SM × A4 × Z8 invariant interaction terms in the scalar potential with
insertions of the new fields η and φ are irrelevant to the vacuum alignment problem,
since they are both flavor singlets. Further constructions with additional fields and
more complicated flavor symmetries are obviously possible at the price of an increased
arbitrariness of the model.

6 Flavor violation and the Kaluza-Klein scale

All models with extra dimensions will have to face the presence of mixing between the de-
grees of freedom of the effective 4D theory and their KK excitations. One of the crucial tasks
in the construction of these models, is thus to guarantee that corrections induced by this
mixing do not spoil the agreement with observations for a natural value of the lowest KK
scale of order a few TeV. In other words, once new physics (NP) contributions induced by
the exchange of the KK excitations are taken into account, the agreement with observations
will force a lower bound on the KK scale, and we demand it be naturally of order a few TeV.

It has been shown [11] that custodial symmetry in the bulk of RS warped models is
able to reduce the lower bound on the first KK mass imposed by electroweak precision
measurements from ∼ 10 TeV to ∼ 4 TeV. A generalization of that analysis to a wider set
of scenarios and including higher order corrections can be found in [70]. More recently,
it has been observed [17–20, 26–28] that FCNC processes can in general produce more
stringent bounds than the observed S, T parameters on the KK scale, and that a residual
CP problem remains in the form of excessive contributions to εK [17–19], the direct CP
violation parameter ε′/εK [20] and the neutron electric dipole moment (EDM) [17–19].

These bounds can slightly be improved if the Higgs field is allowed to propagate in the
bulk. In this case all zero mode fermions can be pushed further towards the UV brane, pre-
serving the same 4D mass and having a reduced overlap with the IR localized KK modes. As
a consequence the 5D Yukawa couplings can be raised without violating perturbativity con-
straints. As we already observed, this is particularly relevant for the top quark, being it the
heaviest fermion zero mode and the most IR localized. For these reasons, our model realizes
custodial symmetry with a bulk Higgs, in addition to an A4 discrete bulk flavor symmetry.

The predictions and constraints derived in [17–20] apply to the general case of flavor an-
archical 5D Yukawa couplings. The conclusions may differ if a flavor pattern of the Yukawa
couplings is assumed to hold in the 5D theory due to bulk flavor symmetries. They typically
imply an increased alignment between the 4D fermion mass matrix and the Yukawa and
gauge couplings, thus suppressing the amount of flavor violation induced by the interactions
with KK states. In our case, the most relevant consequence of the A4 flavor symmetry is
the degeneracy of the left-handed fermion bulk profiles fQ, i.e. diag(fQ1,Q2,Q3) = fQ×1. In
addition, the distribution of phases, CKM and Majorana-like, in the mixing matrices might
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Figure 2. Contribution to εK from a KK gluon exchange (left). Dipole contributions to the neutron
EDM from KK down-quarks (center) and KK up-quarks (right). The same type of dipole diagrams
also contribute to b→ s(d)γ and ε′/εK .

induce zeros in the imaginary components of the Wilson coefficients contributing to CP
violating quantities. We can straightforwardly identify a few properties of our model and
state some results, while we defer to a separate work a more complete study. Following the
spurion analysis in [17–19], we observe the following facts, consequence of the degenerate
left-handed fermion profiles. First, the new physics contribution to εK coming from a KK
gluon exchange, the leftmost diagram in figure 2 vanishes, since

εNP
K ∝ Im

[
V d†
L diag(f−2

Q1,Q2,Q3
)V d
L

]2

12
= f−4

Q Im(V d†
L V d

L )2
12 = 0 , (6.1)

in the basis where the fermion profiles are real and diagonal. We notice that the amplitude
itself vanishes and not only its imaginary part. Second, and for the same reason, the
left-handed rotation matrix V d

L will disappear from all down-type contributions to the
dipole effective operators of the form Oijγ,(g) = d̄iLσµνd

j
RF (G)µν , center diagram in figure 1.

A pleasing result is the vanishing of the down-type new physics contributions to the
neutron electric dipole moment, induced by the same diagram with external d quarks.
Again following [17–19], this contribution vanishes as follows

ImCd−typedn
∝ Im

[
V d†
R diag(f2

d1,d2,d3)V d
Rdiag(md,s,b)V

d†
L diag(f2

Q1,Q2,Q3
)V d
L

]
11

= f2
QmdIm

[
V d†
R diag(f2

d1,d2,d3)V d
R

]
11

= 0 . (6.2)

Contributions from up-type KK fermion exchange, rightmost diagram in figure 2, involve
left- and right-handed matrices and are thus expected to be non zero, generally of the same
size as in any flavor anarchic model. However, a bulk flavor symmetry might induce an
interesting cancellation of observable phases, so that dominant new physics contributions
to the neutron electric dipole moment and, or, to ε′/εK will vanish. We leave this analysis
and the study of Higgs mediated FCNCs for future work. We conclude here that the
presence of a bulk A4 flavor symmetry can only improve upon the residual CP violation
problem that in general affects warped models with flavor anarchy. We have seen that the
constraint induced by tree level KK gluon exchange to εK is released, leaving b → s(d)γ,
ε′/εK , the neutron EDM and Higgs mediated FCNCs as possible candidates to produce the
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most stringent lower bounds on the KK scale. In the worst scenario, a milder lower bound
from the EDM and ε′/εK is expected in our model due to the vanishing of down-type dipole
contributions. On the other hand, the degeneracy of left-handed fermion bulk profiles is
expected to not be sufficient to produce a suppression of Higgs mediated FCNCs at tree
level. This might require additional constraints on the right-handed fermion profiles.

Alternatively, a cancellation of observable phases, and a consequent vanishing of the
imaginary parts of flavor violating amplitudes such as the new physics contributions to
the EDM, εK and ε′/εK , would obviously be a welcomed feature of the model; it would
release the most stringent lower bounds on the KK scale from CP violating observables
and solve the residual CP problem.

7 Conclusions

We have constructed a warped extradimensional realization of an A4 flavor model for
quarks and leptons, and implemented the flavor symmetry breaking pattern A4 → nothing
first suggested in [47]. In this construction all standard model fields, including the Higgs
field, propagate in the bulk and a bulk custodial symmetry is broken in two different
ways [11] on the UV and IR brane by orbifold boundary conditions. The spontaneous
symmetry breaking of the A4 flavor symmetry is induced by the VEVs of two bulk flavon
fields Φ and χ: Φ is responsible of the breaking pattern A4 → Z3 in the charged fermion
sector, while χ is responsible of the breaking pattern A4 → Z2 in the neutrino sector.
By taking the two flavons to be peaked on different branes, we approximately sequester
the two sectors and the associated symmetry breaking patterns: neutrinos with the
UV-peaked χ on one side, charged fermions with the IR-peaked Φ on the other. If the
two sectors do not communicate, that is when the interactions of Φ with neutrinos and
χ with charged fermions are switched off, tribimaximal mixing for neutrinos is exactly
reproduced, while no quark mixing is generated. In our model the two flavons propagating
in the bulk are responsible for cross-brane interactions and a complete cross-talk between
the charged fermion and neutrino sectors. As a consequence, quark mixing on the IR brane
is generated by contributions which are naturally suppressed by the warped geometry
with respect to the leading order pattern in the quark and lepton sectors [41–44, 47].

Using this realization we have obtained an almost realistic CKM matrix, including its
CP violating phase, with almost degenerate order one complex Yukawa couplings. The
large hierarchy of standard model fermion masses is generated by a tiny hierarchy in the
bulk fermion mass parameters, a well known pleasing feature of warped constructions. At
the same time the contributions of all cross-talk and cross-brane effects do not spoil the
tribimaximal mixing pattern in the neutrino sector, where they produce deviations within
1σ from the experimental values, with small non zero contributions also to θ13.

The cross-talk/brane induced quark mixing, to leading order in the perturbative
diagonalization of the mass matrices, is expressed in terms of six complex parameters
in the up and down sectors, x̃u,di , ỹu,di , with i = 1, 2, 3. It turns out that, with all these
parameters of order one and allowing for at least two relative phases, one obtains an
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almost realistic CKM matrix within the model theoretical error. At this order the diagonal
CKM entries remain equal to one, and the two smallest entries Vub and Vtd are degenerate.

We have also noticed that the possibility of producing hierarchical CKM matrix ele-
ments, of order λCKM, λ2

CKM and λ3
CKM, with all parameters of order one stems from the

presence of built-in cancellations induced by the hierarchical masses. The presence of the
A4 induced phase ω also produces a pattern in the corrections. Analogous cancellations are
expected to occur at higher orders. It is instructive to compare this A4 pattern with other
flavor symmetry groups, in particular T ′ [48–53]. The Wolfenstein parametrization would
suggest the existence of an expansion parameter to be naturally identified with λCKM, offer-
ing an elegant and simple description of quark mixing in the standard model. On the other
hand, flavor models based on otherwise appealing discrete flavor symmetries such as A4 and
T ′ seem to rely on more complicated patterns in order to produce a realistic CKM matrix.

A bulk A4 flavor symmetry is also welcomed in order to suppress the amount of flavor
violation induced by the mixing of the standard model particles — the zero modes of the
5D theory — with their Kaluza-Klein excitations. The degeneracy of left-handed fermion
bulk profiles, due to having assigned the left-handed fermions to triplets of A4, implies that
the tree level contribution from a KK gluon exchange to εK vanishes. For the same reason,
all down-type dipole contributions to the neutron electric dipole moment and ε′/εK also
vanish. The situation is different for Higgs mediated FCNCs [26–28] and their contribution
to εK at tree level, since they involve both left- and right-handed fermion profiles. Their
suppression might require further constraints on the right-handed sector, to be explored in
future work. Even in the presence of non vanishing amplitudes, an A4 induced cancellation
of observable phases and the consequent vanishing of new physics contributions to the
EDM, εK and ε′/εK , would obviously be a welcomed feature of the model, removing the
most stringent bounds on the KK scale and resolving the little CP problem [17–19].

Finally, the presence of cross-brane interactions of the flavon fields Φ and χ inevitably
induces deviations from the VEVs that realize the two breaking patterns A4 → Z3 and
A4 → Z2, leading to the well known vacuum alignment problem. However, in this case
such corrections are naturally suppressed, being the two flavons peaked on different
branes. In particular, we have shown that the contribution from the most dominant term
in the interaction potential V (Φ, χ) can be pushed below the model theoretical error by
introducing a bulk mass for the UV-peaked χ field. Obviously, this implies the need to
rescale by a global amount all the x̃u,di , ỹu,di parameters entering quark mixing, a rescaling
that should anyway maintain all parameters of order one and satisfy all perturbativity
bounds. On the other hand, employing a Z8 symmetry setup, as suggested in section VI,
directly forbids the most dangerous terms and seems to provide a more elegant solution.

The A4 flavor symmetry still appears to be the most elegant and economical way to
account for the nearly tribimaximal mixing pattern of neutrinos. We have shown here
that it is also possible to obtain an almost realistic quark mixing, using a rather simple
embedding of A4 in a warped extra dimension and with minimal field content. The main
advantage of this construction remains the one of having cross-brane interactions and
cross-talk effects sufficiently large to account for the observed quark mixing, without
affecting the other results, or spoiling the vacuum alignment. A dynamical completion
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of this, as of other flavor models involving a discrete flavor symmetry would certainly be
desirable. Possible scenarios already described in the literature include a spontaneous sym-
metry breaking of a continuous flavor symmetry [71] or having A4 as a remnant spacetime
symmetry of a toroidal compactification scheme of a six-dimensional spacetime [72].

It is worth to mention two additional points. It is appealing to explore the effects
of a heavier Higgs in this context. Some of the model predictions would get closer to
the best fits for certain observables, such as Zbb̄ ratios and asymmetries, allowing for a
larger parameter space. However, as discussed in the literature, a heavier Higgs mass in
a custodial setup easily induces conflicts with electroweak precision measurements and a
more careful estimate of the allowed range of values for mH should be produced in each
version of the custodial setup. The final point concerns possible extensions of the warped
A4 model. It is interesting and phenomenologically relevant to consider the possibility to
embed PLR (or other versions of) custodial symmetry [55] into warped A4. This would
release the most stringent constraint on the model parameter space due to the Zbb̄ best
fits and could provide new appealing features alternative to flavor anarchic models.
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A Basic A4 properties

The alternating group of order four, denoted A4, is defined as the set of all twelve even
permutations of four objects and is isomorphic to T , the tetrahedral group. It has a real
three-dimensional irreducible representation 3, and three inequivalent one-dimensional
representations 1, 1′ and 1′′. The representation 1 is trivial, while 1′ and 1′′ are non-trivial
and complex conjugates of each other.

The twelve representation matrices for 3 are conveniently taken to be the 3×3 identity
matrix 1, the reflection matrices r1 ≡ diag(1,−1,−1), r2 ≡ diag(−1, 1,−1) and r3 ≡
diag(−1,−1, 1), the cyclic and anticyclic matrices

c = a−1 ≡

 0 0 1
1 0 0
0 1 0

 and a = c−1 ≡

 0 1 0
0 0 1
1 0 0

 , (A.1)

respectively, as well as ricri and riari. Under the group element corresponding to c(a),
1′ → ω(ω2)1′ and 1′′ → ω2(ω)1′′, where ω = ei2π/3 is a complex cube root of unity, with
both representations being unchanged under the ri.

The basic non-trivial tensor products are

3⊗ 3 = 3s ⊕ 3a ⊕ 1⊕ 1′ ⊕ 1′′, and 1′ ⊗ 1′ = 1′′, (A.2)

where s(a) denotes symmetric (antisymmetric) product. Let (x1, x2, x3) and (y1, y2, y3)
denote the basis vectors for two 3’s. Then

(3⊗ 3)3s = (x2y3 + x3y2 , x3y1 + x1y3 , x1y2 + x2y1), (A.3)
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(3⊗ 3)3a = (x2y3 − x3y2 , x3y1 − x1y3 , x1y2 − x2y1), (A.4)

(3⊗ 3)1 = x1y1 + x2y2 + x3y3, (A.5)

(3⊗ 3)1′ = x1y1 + ω x2y2 + ω2 x3y3, (A.6)

(3⊗ 3)1′′ = x1y1 + ω2 x2y2 + ω x3y3, (A.7)

in an obvious notation.
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