38 research outputs found

    Accumbens D2-MSN hyperactivity drives antipsychotic-induced behavioral supersensitivity

    Get PDF
    Antipsychotic-induced dopamine supersensitivity, or behavioral supersensitivity, is a problematic consequence of long-term antipsychotic treatment characterized by the emergence of motor abnormalities, refractory symptoms, and rebound psychosis. The underlying mechanisms are unclear and no approaches exist to prevent or reverse these unwanted effects of antipsychotic treatment. Here we demonstrate that behavioral supersensitivity stems from long-lasting pre, post and perisynaptic plasticity, including insertion of Ca2+-permeable AMPA receptors and loss of D2 receptor-dependent inhibitory postsynaptic currents (IPSCs) in D2 receptor-expressing medium spiny neurons (D2-MSNs) in the nucleus accumbens core (NAcore). The resulting hyperexcitability, prominent in a subpopulation of D2-MSNs (21%), caused locomotor sensitization to cocaine and was associated with behavioral endophenotypes of antipsychotic treatment resistance and substance use disorder, including disrupted extinction learning and augmented cue-induced cocaine-seeking behavior. Chemogenetic restoration of IPSCs in D2-MSNs in the NAcore was sufficient to prevent antipsychotic-induced supersensitivity, pointing to an entirely novel therapeutic direction for overcoming this condition

    Long-Term Dabigatran Treatment Delays Alzheimer's Disease Pathogenesis in the TgCRND8 Mouse Model

    Get PDF
    BACKGROUND: Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder with important vascular and hemostatic alterations that should be taken into account during diagnosis and treatment. OBJECTIVES: This study evaluates whether anticoagulation with dabigatran, a clinically approved oral direct thrombin inhibitor with a low risk of intracerebral hemorrhage, ameliorates AD pathogenesis in a transgenic mouse model of AD. METHODS: TgCRND8 AD mice and their wild-type littermates were treated for 1 year with dabigatran etexilate or placebo. Cognition was evaluated using the Barnes maze, and cerebral perfusion was examined by arterial spin labeling. At the molecular level, Western blot and histochemical analyses were performed to analyze fibrin content, amyloid burden, neuroinflammatory activity, and blood-brain barrier (BBB) integrity. RESULTS: Anticoagulation with dabigatran prevented memory decline, cerebral hypoperfusion, and toxic fibrin deposition in the AD mouse brain. In addition, long-term dabigatran treatment significantly reduced the extent of amyloid plaques, oligomers, phagocytic microglia, and infiltrated T cells by 23.7%, 51.8%, 31.3%, and 32.2%, respectively. Dabigatran anticoagulation also prevented AD-related astrogliosis and pericyte alterations, and maintained expression of the water channel aquaporin-4 at astrocytic perivascular endfeet of the BBB. CONCLUSIONS: Long-term anticoagulation with dabigatran inhibited thrombin and the formation of occlusive thrombi in AD; preserved cognition, cerebral perfusion, and BBB function; and ameliorated neuroinflammation and amyloid deposition in AD mice. Our results open a field for future investigation on whether the use of direct oral anticoagulants might be of therapeutic value in AD.This work was funded by a Proof-of-Concept Award from the Robertson Therapeutic Development Fund (Dr. Cortes-Canteli), The Rockefeller University; NINDS/NIH grant NIS106668 (Drs. Norris and Strickland); European Union’s Seventh Framework Programme (FP7-PEOPLE-2013-IIF), grant agreement n PIIF-GA-2013-624811 (Drs. Cortes-Canteli and Fuster), CNIC, Madrid, Spain; Miguel Servet type I research contract (CP16/00174 and MS16/00174 [Dr. Cortes-Canteli]), Instituto de Salud Carlos III (ISCIII), CNIC; Iniciativa de Empleo Juvenil (PEJ16/MED/TL-1231 [A. Marcos-Diaz] and PEJ-2018-AI/BMD-11477 [C. Ceron]) from Consejería de Educación, Juventud y Deporte de la Comunidad de Madrid; European Regional Development Funds (FEDER “Una manera de hacer Europa”) and European Social Funds (FSE “El FSE invierte en tu futuro”); and with the support of the Marie Curie Alumni Association (Dr. Cortes-Canteli). The CNIC is supported by the ISCIII, the Spanish Ministerio de Ciencia, Innovación y Universidades (MCNU), and the Pro CNIC Foundation, and is a Severo Ochoa Center of Excellence (SEV-2015-0505). CIC biomaGUNE is a Maria de Maeztu Unit of Excellence (MDM-2017-0720). Dr. Sanchez-Gonzalez is an employee of Philips Healthcare. All other authors have reported that they have no relationships relevant to the contents of this paper to disclose.S

    Confirmation of a double-hit model for the NF1 gene in benign neurofibromas.

    Get PDF
    Neurofibroma is a benign tumor that arises from small or large nerves. This neoplastic lesion is a common feature of neurofibromatosis type 1 (NF1), one of the most common autosomal dominant disorders. The NF1 gene codes for a protein called "neurofibromin." It possesses a region that shares a high homology with the family of GTPase-activating proteins, which are negative regulators of RAS function and thereby control cell growth and differentiation. The evidence points to the NF1 gene being a tumor-suppressor gene. NF1 patients also have an increased incidence of certain malignant tumors that are believed to follow the "two hit" hypothesis, with one allele constitutionally inactivated and the other somatically mutated. Recently, somatic loss of heterozygosity (LOH) has been described for neurofibromas, and mutations in both copies of the NF1 gene have been reported for a dermal neurofibroma. The aim of our study was the analysis of the NF1 locus in benign neurofibromas in NF1 patients. We performed LOH analysis on 60 neurofibromas belonging to 17 patients, 9 of them with family history of the disease and 8 of them sporadic. We have analyzed five intragenic NF1 markers and six extragenic markers, and we have found LOH in 25% of the neurofibromas (corresponding to 53% of the patients). In addition, we found that in the neurofibromas of patients from familial cases the deletions occurred in the allele that is not transmitted with the disease, indicating that both copies of the NF1 gene were inactivated in these tumors. Therefore, the recent reports mentioned above, together with our findings, strongly support the double inactivation of the NF1 gene in benign neurofibromas

    Cloning the mouse homolog of the human cystic fibrosis transmembrane conductance regulator gene.

    No full text
    The cystic fibrosis transmembrane conductance regulator is encoded by the gene known to be mutated in patients with cystic fibrosis. This paper reports the cloning and sequencing of cDNAs for the murine homolog of the human cystic fibrosis transmembrane conductance regulator gene. A clone that, by analogy to the human sequence, extends 3' from exon 9 to the poly(A) tail was isolated from a mouse lung cDNA library. cDNA clones containing exons 4 and 6b were also isolated and sequenced, but the remainder of the mRNA proved difficult to obtain by conventional cDNA library screening. Sequences spanning exons 1-9 were cloned by PCR from mouse RNA. The deduced mouse protein sequence is 78% identical to the human cystic fibrosis transmembrane regulator, with higher conservation in the transmembrane and nucleotide-binding domains. Amino acid sequences in which known cystic fibrosis missense mutations occur are conserved between man and mouse; in particular, the predicted mouse protein has a phenylalanine residue corresponding to that deleted in the most common human cystic fibrosis mutation (delta F508), which should allow the use of transgenic strategies to introduce this mutation in attempts to create a "cystic fibrosis mouse"

    A clinical variant of neurofibromatosis type 1: familial spinal neurofibromatosis with a frameshift mutation in the NF1 gene.

    Get PDF
    Spinal neurofibromatosis (SNF) has been considered to be an alternative form of neurofibromatosis in which spinal cord tumors are the main clinical characteristic. Familial SNF has been reported, elsewhere, in three families-two linked to markers within the gene for neurofibromatosis type 1 (NF1) and the other not linked to NF1-but no molecular alterations have been described in these families. We describe a three-generation family that includes five members affected by SNF. All the affected members presented multiple spinal neurofibromas and café au lait spots, one member had cutaneous neurofibromas, and some members had other signs of NF1. Genetic analysis, performed with markers within and flanking the NF1 gene, showed segregation with the NF1 locus. Mutation analysis, performed with the protein-truncation test and SSCP/heteroduplex analysis of the whole coding region of the NF1 gene, identified a frameshift mutation (8042insA) in exon 46, which should result in a truncated NF1 protein. The 8042insA mutation was detected in all five family members with the SNF/NF1 phenotype. To our knowledge, this is the first time that a mutation in the NF1 gene has been associated with SNF. The clinical homogeneity in the severity of the disease among the affected members of the family, which is unusual in NF1, suggests that a particular property of the NF1 mutation described here, a gene closely linked to NF1, or posttranscriptional events are involved in this severe neurological phenotype

    Further data supporting linkage between cystic fibrosis and the met oncogene and haplotype analysis with met and pJ3.11

    No full text
    The linkage of cystic fibrosis (CF) and the polymorphic DNA markers pJ3.11, met, 7C22, DOCR1-917, COL1A2, and TCRB have jointly localized the mutation causing CF to chromosome 7q2.1-3.1. We report further linkage data with two polymorphic markers at the met oncogene locus, pmetH and pmetD, which supports the tight linkage found by White et al. between CF and met. One family shows evidence for meiotic recombination between CF and met. Analysis of haplotypes in CF pedigrees collected for linkage studies combined with data from single affected families requesting prenatal diagnosis (Farrall et al., Lancet i:1402–1404, 1986) shows CF and met to be in linkage equilibrium in our population while pJ3.11-CF haplotypes show a deviation from the equilibrium frequencies
    corecore