493 research outputs found

    Revealing structure and evolution within the corona of the Seyfert galaxy I Zw 1

    Get PDF
    X-ray spectral timing analysis is presented of XMM-Newton observations of the narrow line Seyfert 1 galaxy I Zwicky 1 (I Zw 1) taken in 2015 January. After exploring the effect of background flaring on timing analyses, X-ray time lags between the reflection-dominated 0.3-1.0keV energy and continuum-dominated 1.0-4.0keV band are measured, indicative of reverberation off the inner accretion disc. The reverberation lag time is seen to vary as a step function in frequency; across lower frequency components of the variability, 3e-4 to 1.2e-3Hz a lag of 160s is measured, but the lag shortens to (59 +/- 4)s above 1.2e-3Hz. The lag-energy spectrum reveals differing profiles between these ranges with a change in the dip showing the earliest arriving photons. The low frequency signal indicates reverberation of X-rays emitted from a corona extended at low height over the disc while at high frequencies, variability is generated in a collimated core of the corona through which luminosity fluctuations propagate upwards. Principal component analysis of the variability supports this interpretation, showing uncorrelated variation in the spectral slope of two power law continuum components. The distinct evolution of the two components of the corona is seen as a flare passes inwards from the extended to the collimated portion. An increase in variability in the extended corona was found preceding the initial increase in X-ray flux. Variability from the extended corona was seen to die away as the flare passed into the collimated core leading to a second sharper increase in the X-ray count rate.Comment: 18 pages, 11 figures. Accepted for publication in MNRA

    Multiwavelength Campaign on Mrk 509 X. Lower limit on the distance of the absorber from HST COS and STIS spectroscopy

    Full text link
    Active Galactic Nuclei often show evidence of photoionized outflows. A major uncertainty in models for these outflows is the distance (RR) to the gas from the central black hole. In this paper we use the HST/COS data from a massive multi-wavelength monitoring campaign on the bright Seyfert I galaxy Mrk 509, in combination with archival HST/STIS data, to constrain the location of the various kinematic components of the outflow. We compare the expected response of the photoionized gas to changes in ionizing flux with the changes measured in the data using the following steps: 1) We compare the column densities of each kinematic component measured in the 2001 STIS data with those measured in the 2009 COS data; 2) We use time-dependent photionization calculations with a set of simulated lightcurves to put statistical upper limits on the hydrogen number density that are consistent with the observed small changes in the ionic column densities; 3) From the upper limit on the number density, we calculate a lower limit on the distance to the absorber from the central source via the prior determination of the ionization parameter. Our method offers two improvements on traditional timescale analysis. First, we account for the physical behavior of AGN lightcurves. Second, our analysis accounts for the quality of measurement in cases where no changes are observed in the absorption troughs. The very small variations in trough ionic column densities (mostly consistent with no change) between the 2001 and 2009 epochs allow us to put statistical lower limits on the distance between 100--200 pc for all the major UV absorption components at a confidence level of 99%. These results are mainly consistent with the independent distance estimates derived for the warm absorbers from the simultaneous X-ray spectra.Comment: Accepted to A&A (06 APR 2012

    Associated Absorption Lines in the Radio-Loud Quasar 3C 351: Far-Ultraviolet Echelle Spectroscopy from the Hubble Space Telescope

    Full text link
    As one of the most luminous radio-loud quasars showing intrinsic ultraviolet (UV) and X-ray absorption, 3C 351 provides a laboratory for studying the kinematics and physical conditions of such ionized absorbers. We present an analysis of the intrinsic absorption lines in the high-resolution (\sim 7 km/s) far-UV spectrum which was obtained from observations with the Space Telescope Imaging Spectrograph (STIS) on board the Hubble Space Telescope (HST). The spectrum spans wavelengths from 1150 \AA to 1710 \AA, and shows strong emission lines from O VI and Lyα\alpha. Associated absorption lines are present on the blue wings of the high-ionization emission doublets O VI λλ\lambda\lambda 1032,1038 and N V λλ\lambda\lambda 1238,1242, as well as the Lyman lines through Lyϵ\epsilon. These intrinsic absorption features are resolved into several distinct kinematic components, covering rest-frame velocities from -40 to -2800 km/s, with respect to the systemic redshift of zem=0.3721z_{em}=0.3721. For the majority of these absorption line regions, strong evidence of partial covering of both the background continuum source and the BELR is found, which supports the intrinsic absorption origin and rules out the possibility that the absorption arises in some associated cluster of galaxies. The relationship between the far-UV absorbers and X-ray `warm' absorbers are studied with the assistance of photoionization models. Most of the UV associated absorption components have low values of the ionization parameter and total hydrogen column densities, which is inconsistent with previous claims that the UV and X-ray absorption arises in the same material. Analysis of these components supports a picture with a wide range of ionization parameters, temperatures, and column densities in AGN outflows.Comment: 27 pages with 5 figures, accepted by Ap

    Multiwavelength campaign on Mrk 509. XIII. Testing ionized-reflection models on Mrk 509

    Get PDF
    Active Galactic Nuclei (AGN) are the most luminous persistent objects in the universe. An excess of X-ray emission below about 2 keV, called soft-excess, is very common in Type 1 AGN spectra. The origin of this feature remains debated. Originally modeled with a blackbody, there are now several possibilities to model the soft-excess, including warm Comptonization and blurred ionized reflection. In this paper, we test ionized-reflection models on Mrk 509, a bright Seyfert 1 galaxy for which we have a unique data set, in order to determine whether it can be responsible for the strong soft-excess. We use ten simultaneous XMM-Newton and INTEGRAL observations performed every four days. We present here the results of the spectral analysis, the evolution of the parameters and the variability properties of the X-ray emission. The application of blurred ionized-reflection models leads to a very strong reflection and an extreme geometry, but fails to reproduce the broad-band spectrum of Mrk 509. Two different scenarios for blurred ionized reflection are discussed: stable geometry and lamp-post configuration. In both cases we find that the model parameters do not follow the expected relations, indicating that the model is fine-tuned to fit the data without physical justification. A large, slow variation of the soft-excess without counterpart in the hard X-rays could be explained by a change in ionization of the reflector. However, such a change does not naturally follow from the assumed geometrical configuration. Warm Comptonization remains the most probable origin of the soft-excess in this object. Nevertheless, it is possible that both ionized reflection and warm Comptonization mechanisms can explain the soft-excess in all objects, one dominating the other one, depending on the physical conditions of the disk and the corona.Comment: 12 pages, A&A accepte

    Multiwavelength campaign on Mrk 509 XIV. Chandra HETGS spectra

    Get PDF
    We present in this paper the results of a 270 ks Chandra HETGS observation in the context of a large multiwavelength campaign on the Seyfert galaxy Mrk 509. The HETGS spectrum allows us to study the high ionisation warm absorber and the Fe-K complex in Mrk 509. We search for variability in the spectral properties of the source with respect to previous observations in this campaign, as well as for evidence of ultra-fast outflow signatures. The Chandra HETGS X-ray spectrum of Mrk 509 was analysed using the SPEX fitting package. We confirm the basic structure of the warm absorber found in the 600 ks XMM-Newton RGS observation observed three years earlier, consisting of five distinct ionisation components in a multikinematic regime. We find little or no variability in the physical properties of the different warm absorber phases with respect to previous observations in this campaign, except for component D2 which has a higher column density at the expense of component C2 at the same outflow velocity (-240 km/s). Contrary to prior reports we find no -700 km/s outflow component. The O VIII absorption line profiles show an average covering factor of 0.81 +/- 0.08 for outflow velocities faster than -100 km/s, similar to those measured in the UV. This supports the idea of a patchy wind. The relative metal abundances in the outflow are close to proto-solar. The narrow component of the Fe Kalpha emission line shows no changes with respect to previous observations which confirms its origin in distant matter. The narrow line has a red wing that can be interpreted to be a weak relativistic emission line. We find no significant evidence of ultra-fast outflows in our new spectrum down to the sensitivity limit of our data.Comment: 12 pages, 9 figures, accepted for publication in Astronomy & Astrophysic

    Multiwavelength campaign on Mrk 509. V. Chandra-LETGS observation of the ionized absorber

    Full text link
    We present here the results of a 180 ks Chandra-LETGS observation as part of a large multi-wavelength campaign on Mrk 509. We study the warm absorber in Mrk 509 and use the data from a simultaneous HST-COS observation in order to assess whether the gas responsible for the UV and X-ray absorption are the same. We analyzed the LETGS X-ray spectrum of Mrk 509 using the SPEX fitting package. We detect several absorption features originating in the ionized absorber of the source, along with resolved emission lines and radiative recombination continua. The absorption features belong to ions with, at least, three distinct ionization degrees. The lowest ionized component is slightly redshifted (v = +73 km/s) and is not in pressure equilibrium with the others, and therefore it is not likely part of the outflow, possibly belonging to the interstellar medium of the host galaxy. The other components are outflowing at velocities of -196 and -455 km/s, respectively. The source was observed simultaneously with HST-COS, finding 13 UV kinematic components. At least three of them can be kinematically associated with the observed X-ray components. Based on the HST-COS results and a previous FUSE observation, we find evidence that the UV absorbing gas might be co-located with the X-ray absorbing gas and belong to the same structure.Comment: 12 pages, 7 figures, 9 tables. Accepted for publication in Astronomy & Astrophysic
    corecore