2,989 research outputs found
The ratio FK/Fpi in QCD
We determine the ratio FK/Fpi in QCD with Nf=2+1 flavors of sea quarks, based
on a series of lattice calculations with three different lattice spacings,
large volumes and a simulated pion mass reaching down to about 190 MeV. We
obtain FK/Fpi=1.192 +/- 0.007(stat) +/- 0.006(syst). This result is then used
to give an updated value of the CKM matrix element |Vus|. The unitarity
relation for the first row of this matrix is found to be well observed.Comment: 15 pages, 4 figures, 2 table
On Hecke theory for Hermitian modular forms
In this paper we outline the Hecke theory for Hermitian modular forms in the
sense of Hel Braun for arbitrary class number of the attached
imaginary-quadratic number field. The Hecke algebra turns out to be
commutative. Its inert part has a structure analogous to the case of the Siegel
modular group and coincides with the tensor product of its -components for
inert primes . This leads to a characterization of the associated
Siegel-Eisenstein series. The proof also involves Hecke theory for particular
congruence subgroups
Precision computation of the kaon bag parameter
Indirect CP violation in K \rightarrow {\pi}{\pi} decays plays a central role
in constraining the flavor structure of the Standard Model (SM) and in the
search for new physics. For many years the leading uncertainty in the SM
prediction of this phenomenon was the one associated with the nonperturbative
strong interaction dynamics in this process. Here we present a fully controlled
lattice QCD calculation of these effects, which are described by the neutral
kaon mixing parameter B_K . We use a two step HEX smeared clover-improved
Wilson action, with four lattice spacings from a\approx0.054 fm to
a\approx0.093 fm and pion masses at and even below the physical value.
Nonperturbative renormalization is performed in the RI-MOM scheme, where we
find that operator mixing induced by chiral symmetry breaking is very small.
Using fully nonperturbative continuum running, we obtain our main result
B_K^{RI}(3.5GeV)=0.531(6)_{stat}(2)_{sys}. A perturbative 2-loop conversion
yields B_K^{MSbar-NDR}(2GeV)=0.564(6)_{stat}(3)_{sys}(6)_{PT}, which is in good
agreement with current results from fits to experimental data.Comment: 10 pages, 7 figures. v2: Added one reference and one figure, replaced
2 figures for better readability and updated ensembles, conclusions
unchanged. Final, published versio
QCD thermodynamics with dynamical overlap fermions
We study QCD thermodynamics using two flavors of dynamical overlap fermions
with quark masses corresponding to a pion mass of 350 MeV. We determine several
observables on N_t=6 and 8 lattices. All our runs are performed with fixed
global topology. Our results are compared with staggered ones and a nice
agreement is found.Comment: 14 pages, 6 figures, 1 tabl
Overview of pathogenesis of systemic sclerosis
The aetiology of SSc is subject to ongoing research, as the precise events that underlie the development of this disease remain unclear. The pathogenesis is known to involve endothelium, epithelium, fibroblasts, innate and adaptive immune systems and their component immunological mediators. Endothelial cell damage may be the initiating factor, but the precise triggering event(s) remain elusive. Angiogenesis also appears to be dysregulated. Vasculopathy shows similarities in different organs (e.g. pulmonary arterial hypertension, renal disease, digital tip ulcers). Endothelin-1 is a potent mediator of vasculopathy, and hence represents a highly relevant target for intervention of vascular features in SS
Electromagnetic corrections to light hadron masses
At the precision reached in current lattice QCD calculations, electromagnetic
effects are becoming numerically relevant. We will present preliminary results
for electromagnetic corrections to light hadron masses, based on simulations in
which a degree of freedom is superimposed on QCD
configurations from the BMW collaboration.Comment: 7 pages, 2 figures, The XXVIII International Symposium on Lattice
Field Theory, June 14-19,2010, Villasimius, Sardinia Ital
Initial nucleon structure results with chiral quarks at the physical point
We report initial nucleon structure results computed on lattices with 2+1
dynamical M\"obius domain wall fermions at the physical point generated by the
RBC and UKQCD collaborations. At this stage, we evaluate only connected quark
contributions. In particular, we discuss the nucleon vector and axial-vector
form factors, nucleon axial charge and the isovector quark momentum fraction.
From currently available statistics, we estimate the stochastic accuracy of the
determination of and to be around 10%, and we expect to
reduce that to 5% within the next year. To reduce the computational cost of our
calculations, we extensively use acceleration techniques such as low-eigenmode
deflation and all-mode-averaging (AMA). We present a method for choosing
optimal AMA parameters.Comment: 7 pages, 11 figures; talk presented at the 32nd International
Symposium on Lattice Field Theory, 23-28 June, 2014, Columbia University, New
York, US
- …