16 research outputs found

    Forward modeling of collective Thomson scattering for Wendelstein 7-X plasmas: Electrostatic approximation

    Get PDF
    In this paper, we present a method for numerical computation of collective Thomson scattering (CTS). We developed a forward model, eCTS, in the electrostatic approximation and benchmarked it against a full electromagnetic model. Differences between the electrostatic and the electromagnetic models are discussed. The sensitivity of the results to the ion temperature and the plasma composition is demonstrated. We integrated the model into the Bayesian data analysis framework Minerva and used it for the analysis of noisy synthetic data sets produced by a full electromagnetic model. It is shown that eCTS can be used for the inference of the bulk ion temperature. The model has been used to infer the bulk ion temperature from the first CTS measurements on Wendelstein 7-X

    Towards a new image processing system at Wendelstein 7-X: From spatial calibration to characterization of thermal events

    Get PDF
    Wendelstein 7-X (W7-X) is the most advanced fusion experiment in the stellarator line and is aimed at proving that the stellarator concept is suitable for a fusion reactor. One of the most important issues for fusion reactors is the monitoring of plasma facing components when exposed to very high heat loads, through the use of visible and infrared (IR) cameras. In this paper, a new image processing system for the analysis of the strike lines on the inboard limiters from the first W7-X experimental campaign is presented. This system builds a model of the IR cameras through the use of spatial calibration techniques, helping to characterize the strike lines by using the information given by real spatial coordinates of each pixel. The characterization of the strike lines is made in terms of position, size, and shape, after projecting the camera image in a 2D grid which tries to preserve the curvilinear surface distances between points. The description of the strike-line shape is made by means of the Fourier Descriptors

    Real-time plasma state monitoring and supervisory control on TCV

    Get PDF
    In ITER and DEMO, various control objectives related to plasma control must be simultaneously achieved by the plasma control system (PCS), in both normal operation as well as off-normal conditions. The PCS must act on off-normal events and deviations from the target scenario, since certain sequences (chains) of events can precede disruptions. It is important that these decisions are made while maintaining a coherent prioritization between the real-time control tasks to ensure high-performance operation. In this paper, a generic architecture for task-based integrated plasma control is proposed. The architecture is characterized by the separation of state estimation, event detection, decisions and task execution among different algorithms, with standardized signal interfaces. Central to the architecture are a plasma state monitor and supervisory controller. In the plasma state monitor, discrete events in the continuous-valued plasma state are modeled using finite state machines. This provides a high-level representation of the plasma state. The supervisory controller coordinates the execution of multiple plasma control tasks by assigning task priorities, based on the finite states of the plasma and the pulse schedule. These algorithms were implemented on the TCV digital control system and integrated with actuator resource management and existing state estimation algorithms and controllers. The plasma state monitor on TCV can track a multitude of plasma events, related to plasma current, rotating and locked neoclassical tearing modes, and position displacements. In TCV experiments on simultaneous control of plasma pressure, safety factor profile and NTMs using electron cyclotron heating (ECH) and current drive (ECCD), the supervisory controller assigns priorities to the relevant control tasks. The tasks are then executed by feedback controllers and actuator allocation management. This work forms a significant step forward in the ongoing integration of control capabilities in experiments on TCV, in support of tokamak reactor operation

    Cooling of hot rotating nuclei by electric and magnetic dipole radiation.

    No full text
    In 1985 the French government created a unique circuit for the dissemination of doctoral theses: References went to a national database “Téléthèses” whereas the documents were distributed to the university libraries in microform. In the era of the electronic document this French network of deposit of and access to doctoral theses is changing. How do you discover and locate a French thesis today, how do you get hold of a paper copy and how do you access the full electronic text? What are the catalogues and databases referencing theses since the disappearance of “Téléthèses”? Where are the archives, and are they open? What is the legal environment that rules the emerging structures and tools? This paper presents national plans on referencing and archiving doctoral theses coordinated by the government as well as some initiatives for creating full text archives. These initiatives come from universities as well as from research institutions and learned societies. “Téléthèses” records have been integrated in a union catalogue of French university libraries SUDOC. University of Lyon-2 and INSA Lyon developed procedures and tools covering the entire production chain from writing to the final access in an archive: “Cyberthèses” and “Cither”. The CNRS Centre for Direct Scientific Communication at Lyon (CCSD) maintains an archive (“TEL”) with about 2000 theses in all disciplines. Another repository for theses in engineering, economics and management called “Pastel” is proposed by the Paris Institute of Technology (ParisTech), a consortium of 10 engineering and commercial schools of the Paris region

    Particle confinement control with resonant magnetic perturbations at TEXTOR

    No full text
    Two very contrary particle confinement stages were obtained at TEXTOR-DED by application of resonant magnetic perturbations. On the one hand a spontaneous build up of the total number of particles N-tot with correlated increase in the particle confinement time tau(p) was observed and on the other hand a controlled decrease of N-tot and tau(p) - the so called stochastic particle pump out is seen. Numerical analysis of the perturbed magnetic field topology shows that both domains can be distinguished by the ratio of short connection length field lines touching a specific resonant flux surface (here the q = 5/2 surface) to the complete perturbed layer width. During improved particle confinement, the hyperbolic fixed points (X-points) of the pitch resonant islands are directly connected to the DED target followed by an less than or similar to 40% increase in tau(p). The subsequent increase in the E x B shear rate Omega(ExB) at the q = 5/2 surface and a steepening of del n(e)(r) suggests a reduction of the radial particle transport. On the opposite, complete stochastisation of this island chain, i.e. a predominant diffusive field line characteristics, causes a less than or similar to 30% decrease of tau(p) with a reduction in Omega(ExB) at the q = 5/2 surface and del n(e)(r) indicating enhanced effective outward particle transport. (C) 2009 Elsevier B.V. All rights reserved

    Particle confinement control with external resonant magnetic perturbations at TEXTOR

    No full text
    Two very contrary particle confinement stages were obtained at TEXTOR-DED by application of resonant magnetic perturbations. On the one hand a spontaneous build up of the total number of particles N-tot with correlated increase in the particle confinement time tau(p) was observed and on the other hand a controlled decrease of N-tot and tau(p) - the so called stochastic particle pump out is seen. Numerical analysis of the perturbed magnetic field topology shows that both domains can be distinguished by the ratio of short connection length field lines touching a specific resonant flux surface (here the q = 5/2 surface) to the complete perturbed layer width. During improved particle confinement, the hyperbolic fixed points (X-points) of the pitch resonant islands are directly connected to the DED target followed by an less than or similar to 40% increase in tau(p). The subsequent increase in the E x B shear rate Omega(ExB) at the q = 5/2 surface and a steepening of del n(e)(r) suggests a reduction of the radial particle transport. On the opposite, complete stochastisation of this island chain, i.e. a predominant diffusive field line characteristics, causes a less than or similar to 30% decrease of tau(p) with a reduction in Omega(ExB) at the q = 5/2 surface and del n(e)(r) indicating enhanced effective outward particle transport. (C) 2009 Elsevier B.V. All rights reserved

    Joint experiments on the tokamaks CASTOR and T-10

    No full text
    Small tokamaks may significantly contribute to the better understanding of phenomena in a wide range of fields such as plasma confinement and energy transport; plasma stability in different magnetic configurations; plasma turbulence and its impact on local and global plasma parameters; processes at the plasma edge and plasma-wall interaction; scenarios of additional heating and non-inductive current drive; new methods of plasma profile and parameter control; development of novel plasma diagnostics; benchmarking of new numerical codes and so on. Furthermore, due to the compactness, flexibility, low operation costs and high skill of their personnel small tokamaks are very convenient to develop and test new materials and technologies. Small tokamaks are suitable and important for broad international cooperation, providing the necessary environment and manpower to conduct dedicated joint research programmes. In addition, the experimental work on small tokamaks is very appropriate for the education of students, scientific activities of post-graduate students and for the training of personnel for large tokamaks. The first Joint (Host Laboratory) Experiment (JEI) has been carried out in 2005 on the CASTOR tokamak at the IPP Prague, Czech Republic. It was jointly organized by the IPP-ASCR and KFKI HAC, Budapest, involved 20 scientists from 7 countries and was supported through the IAEA and the ICTP, Trieste. The objective of JE1 was to perform studies of plasma edge turbulence and plasma confinement. Following the success of JE1, JE2 has been performed on T-10 at RRC "Kurchatov Institute" in Moscow; 30 scientists from 13 countries participated in this experiment. This experiment aimed to continue JEI turbulence studies, now extending them to the plasma core. Results of JEI and JE2 will be overviewed and compared

    Results of Joint Experiments and other IAEA activities on research using small tokamaks

    No full text
    This paper presents an overview of the results obtained during the Joint Experiments organized in the framework of the IAEA Coordinated Research Project on `Joint Research Using Small Tokamaks` that have been carried out on the tokamaks CASTOR at IPP Prague, Czech Republic (2005), T-10 at RRC `Kurchatov Institute`, Moscow, Russia (2006), and the most recent one at ISTTOK at IST, Lisbon, Portugal, in 2007. Experimental programmes were aimed at diagnosing and characterizing the core and the edge plasma turbulence in a tokamak in order to investigate correlations between the occurrence of transport barriers, improved confinement, electric fields and electrostatic turbulence using advanced diagnostics with high spatial and temporal resolution. On CASTOR and ISTTOK, electric fields were generated by biasing an electrode inserted into the edge plasma and an improvement of the global particle confinement induced by the electrode positive biasing has been observed. Geodesic acoustic modes were studied using heavy ion beam diagnostics on T-10 and ISTTOK and correlation reflectometry on T-10. ISTTOK is equipped with a gallium jet injector and the technical feasibility of gallium jets interacting with plasmas has been investigated in pulsed and ac operation. The first Joint Experiments have clearly demonstrated that small tokamaks are suitable for broad international cooperation to conduct dedicated joint research programmes. Other activities within the IAEA Coordinated Research Project on Joint Research Using Small Tokamaks are also overviewed.GACR Grant Agency of Academy of Sciences of the Czech Republic[KJB100430504]ROSATOM[RF 02.516.11.6068]ROSATOM[RFBR 0502-17016]ROSATOMROSATOM[07-02-01001]ROSATOM[INTAS 100008-8046]ROSATOM[NWO-RFBR 047.016.015]IAEAICT
    corecore