2,489 research outputs found

    Let us do better: learning lessons for recovery of healthcare professionals during and after COVID-19

    Get PDF
    The COVID-19 pandemic emphasises the need to rethink and restructure the culture of healthcare organisations if we are to ensure the long-term well-being and mental health of healthcare provider organisations and their staff. In this paper, we recognise the high levels of stress and distress among staff of healthcare services before the COVID-19 pandemic began. We identify lessons for care of healthcare staff and illustrate the paths by which support mobilises and later deteriorates. Although this paper focuses on NHS staff in the UK, we contend that similar effects are likely in most healthcare systems

    Mononuclear dysprosium(III) complexes with triphenylphosphine oxide ligands: controlling the coordination environment and magnetic anisotropy

    Get PDF
    We report the synthesis, structural and magnetic characterization of five mononuclear DyIII ion complexes using triphenylphosphine oxide as a monodentate ligand. They have formulae [DyIII(OPPh3)3(NO3)3] (1), [DyIII(OPPh3)4(NO3)2](NO3) (2), [DyIII(OPPh3)3Cl3] (3), [DyIII(OPPh3)4Cl2]Cl (4) and [DyIII(OPPh3)4Cl2](FeCl4) (5). These complexes are characterized using single crystal X-ray diffraction, which revealed that each complex has a unique coordination environment around the DyIII ion, which results in varying dynamic magnetic behavior. Ab initio calculations are performed to rationalize the observed magnetic behavior and to understand the effect that the ligand and coordination geometry around the DyIII ion has on the single-molecule magnet (SMM) behavior. In recent years, seven coordinate DyIII complexes possessing pseudo ~D5h symmetry are found to yield attractive blocking temperatures for the development of new SMM complexes. However, here we show that the strength of the donor ligand plays a critical role in determining the effective energy barrier and is not simply dependent on the geometry and the symmetry around the DyIII ion. Seven coordinate molecules possessing pseudo D5h symmetry with strong equatorial ligation and weak axial ligation are found to be inferior, exhibiting no SMM characteristics under zero-field conditions. Thus, this comprehensive study offers insight on improving the blocking temperature of mononuclear SMMs

    Exploring the Influence of Diamagnetic Ions on the Mechanism of Magnetization Relaxation in {CoIII2LnIII2} (Ln = Dy, Tb, Ho) “Butterfly” Complexes

    Get PDF
    © 2017 American Chemical Society. The synthesis and magnetic and theoretical studies of three isostructural heterometallic [CoIII2LnIII2(μ3-OH)2(o-tol)4(mdea)2(NO3)2] (Ln = Dy (1), Tb (2), Ho (3)) "butterfly" complexes are reported (o-tol = o-toluate, (mdea)2- = doubly deprotonated N-methyldiethanolamine). The CoIII ions are diamagnetic in these complexes. Analysis of the dc magnetic susceptibility measurements reveal antiferromagnetic exchange coupling between the two LnIII ions for all three complexes. ac magnetic susceptibility measurements reveal single-molecule magnet (SMM) behavior for complex 1, in the absence of an external magnetic field, with an anisotropy barrier Ueff of 81.2 cm-1, while complexes 2 and 3 exhibit field induced SMM behavior, with a Ueff value of 34.2 cm-1 for 2. The barrier height for 3 could not be quantified. To understand the experimental observations, we performed DFT and ab initio CASSCF+RASSI-SO calculations to probe the single-ion properties and the nature and magnitude of the LnIII-LnIII magnetic coupling and to develop an understanding of the role the diamagnetic CoIII ion plays in the magnetization relaxation. The calculations were able to rationalize the experimental relaxation data for all complexes and strongly suggest that the CoIII ion is integral to the observation of SMM behavior in these systems. Thus, we explored further the effect that the diamagnetic CoIII ions have on the magnetization blocking of 1. We did this by modeling a dinuclear {DyIII2} complex (1a), with the removal of the diamagnetic ions, and three complexes of the types {KI2DyIII2} (1b), {ZnII2DyIII2} (1c), and {TiIV2DyIII2} (1d), each containing a different diamagnetic ion. We found that the presence of the diamagnetic ions results in larger negative charges on the bridging hydroxides (1b > 1c > 1 > 1d), in comparison to 1a (no diamagnetic ion), which reduces quantum tunneling of magnetization effects, allowing for more desirable SMM characteristics. The results indicate very strong dependence of diamagnetic ions in the magnetization blocking and the magnitude of the energy barriers. Here we propose a synthetic strategy to enhance the energy barrier in lanthanide-based SMMs by incorporating s- and d-block diamagnetic ions. The presented strategy is likely to have implications beyond the single-molecule magnets studied here

    Is the outer Solar System chaotic?

    Get PDF
    The existence of chaos in the system of Jovian planets has been in question for the past 15 years. Various investigators have found Lyapunov times ranging from about 5 millions years upwards to infinity, with no clear reason for the discrepancy. In this paper, we resolve the issue. The position of the outer planets is known to only a few parts in 10 million. We show that, within that observational uncertainty, there exist Lyapunov timescales in the full range listed above. Thus, the ``true'' Lyapunov timescale of the outer Solar System cannot be resolved using current observations.Comment: 8 pages, 2 figure

    Oblate versus Prolate Electron Density of Lanthanide Ions: A Design Criterion for Engineering Toroidal Moments? A Case Study on {Ln <sup>III</sup><inf>6</inf> } (Ln=Tb, Dy, Ho and Er) Wheels

    Get PDF
    © 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim We report four new complexes based on a {Ln III6 } wheel structure, three of which possess a net toroidal magnetic moment. The four examples consist of {Tb III6 } and {Ho III6 } wheels, which are rare examples of non Dy III based complexes possessing a toroidal magnetic ground state, and a {Dy III6 } complex which improves its toroidal structure upon lowering the crystallographic symmetry from trigonal (R (Formula presented.)) to triclinic (P (Formula presented.)). Notably the toroidal moment is lost for the trigonal {Er III6 } analogue. This suggests the possibility of utilizing the popular concept of oblate and prolate electron density of the ground state M J levels of lanthanide ions to engineer toroidal moments

    Effectiveness of moving on: an Australian designed generic self-management program for people with a chronic illness

    Get PDF
    Background: This paper presents the evaluation of “Moving On”, a generic self-management program for people with a chronic illness developed by Arthritis NSW. The program aims to help participants identify their need for behavior change and acquire the knowledge and skills to implement changes that promote their health and quality of life. Method: A prospective pragmatic randomised controlled trial involving two group programs in community settings: the intervention program (Moving On) and a control program (light physical activity). Participants were recruited by primary health care providers across the north-west region of metropolitan Sydney, Australia between June 2009 and October 2010. Patient outcomes were self-reported via pre- and post-program surveys completed at the time of enrolment and sixteen weeks after program commencement. Primary outcomes were change in self-efficacy (Self-efficacy for Managing Chronic Disease 6-Item Scale), self-management knowledge and behaviour and perceived health status (Self-Rated Health Scale and the Health Distress Scale). Results: A total of 388 patient referrals were received, of whom 250 (64.4%) enrolled in the study. Three patients withdrew prior to allocation. 25 block randomisations were performed by a statistician external to the research team: 123 patients were allocated to the intervention program and 124 were allocated to the control program. 97 (78.9%) of the intervention participants commenced their program. The overall attrition rate of 40.5% included withdrawals from the study and both programs. 24.4% of participants withdrew from the intervention program but not the study and 22.6% withdrew from the control program but not the study. A total of 62 patients completed the intervention program and follow-up evaluation survey and 77 patients completed the control program and follow- up evaluation survey. At 16 weeks follow-up there was no significant difference between intervention and control groups in self-efficacy; however, there was an increase in self-efficacy from baseline to follow-up for the intervention participants (t=−1.948, p=0.028). There were no significant differences in self-rated health or health distress scores between groups at follow-up, with both groups reporting a significant decrease in health distress scores. There was no significant difference between or within groups in self-management knowledge and stage of change of behaviours at follow-up. Intervention group attenders had significantly higher physical activity (t=−4.053, p=0.000) and nutrition scores (t=2.315, p= 0.01) at follow-up; however, these did not remain significant after adjustment for covariates. At follow-up, significantly more participants in the control group (20.8%) indicated that they did not have a self-management plan compared to those in the intervention group (8.8%) (X2=4.671, p=0.031). There were no significant changes in other self-management knowledge areas and behaviours after adjusting for covariates at follow-up. Conclusions: The study produced mixed findings. Differences between groups as allocated were diluted by the high proportion of patients not completing the program. Further monitoring and evaluation are needed of the impact and cost effectiveness of the program. Trial registration: Australian New Zealand Clinical Trials Registry: ACTRN1260900029821

    {MnIII2LnIII2} (Ln = Gd, La or Y) butterfly complexes: Ferromagnetic exchange observed between bis-μ-alkoxo bridged manganese(III) ions

    Get PDF
    © 2019 Elsevier Ltd Three tetranuclear {MnIII2LnIII2} ‘butterfly’ complexes with common MnIII2 µ3-alkoxo bridging motifs surrounded by two LnIII ions (Ln = Gd, La or Y) have been studied by structural, magnetic and density functional theoretical calculations. The exchange coupling constant between the body–body Mn(III) ions is ferromagnetic in all cases, the La and Y examples being diamagnetic at the wing-wing positions. The wing-body Jwb (Mn–Gd) interaction is small and negative. Reasons are given for these JMnMn values, including the effects of the terminal LnIII ions, comparison to analogous Mn2 dinuclears, and the effects of spin polarisation

    What Controls the Magnetic Exchange and Anisotropy in a Family of Tetranuclear {Mn2IIMn2III} Single-Molecule Magnets?

    Get PDF
    © 2017 American Chemical Society.Twelve heterovalent, tetranuclear manganese(II/III) planar diamond or “butterfly” complexes, 1-12, have been synthesized and structurally characterized, and their magnetic properties have been probed using experimental and theoretical techniques. The 12 structures are divided into two distinct “classes”. Compounds 1-8 place the Mn(III), S = 2, ions in the body positions of the butterfly metallic core, while the Mn(II), S = 5/2, ions occupy the outer wing sites and are described as “Class 1”. Compounds 9-12 display the reverse arrangement of ions and are described as “Class 2”. Direct current susceptibility measurements for 1-12 reveal ground spin states ranging from S = 1 to S = 9, with each complex displaying unique magnetic exchange parameters (J). Alternating current susceptibility measurements found that that slow magnetic relaxation is observed for all complexes, except for 10 and 12, and display differing anisotropy barriers to magnetization reversal. First, we determined the magnitude of the magnetic exchange parameters for all complexes. Three exchange coupling constants (Jbb, Jwb, and Jww) were determined by DFT methods which are found to be in good agreement with the experimental fits. It was found that the orientation of the Jahn-Teller axes and the Mn-Mn distances play a pivotal role in determining the sign and strength of the Jbb parameter. Extensive magneto-structural correlations have been developed for the two classes of {MnII2MnIII2} butterfly complexes by varying the Mnb-O distance, Mnw-O distance, Mnb-O-Mnb angle (α), Mnb-O-Mnb-O dihedral angle (γ), and out-of-plane shift of the Mnw atoms (β). For the magnetic anisotropy the DFT calculations yielded larger negative D value for complexes 2, 3, 4, and 6 compared to the other complexes. This is found to be correlated to the electron-donating/withdrawing substituents attached to the ligand moiety and suggests a possible way to fine tune the magnetic anisotropy in polynuclear Mn ion complexes
    corecore