31 research outputs found

    Hydrological legacy determines the type of enzyme inhibition in a peatlands chronosequence

    Get PDF
    © 2017 The Author(s). Peatland ecosystems contain one-third of the world's soil carbon store and many have been exposed to drought leading to a loss of carbon. Understanding biogeochemical mechanisms affecting decomposition in peatlands is essential for improving resilience of ecosystem function to predicted climate change. We investigated biogeochemical changes along a chronosequence of hydrological restoration (dry eroded gully, drain-blocke

    Vegetation Leachate During Arctic Thaw Enhances Soil Microbial Phosphorus

    Get PDF
    Leachate from litter and vegetation penetrates permafrost surface soils during thaw before being exported to aquatic systems. We know this leachate is critical to ecosystem function downstream and hypothesized that thaw leachate inputs would also drive terrestrial microbial activity and nutrient uptake. However, we recognized two potential endpoint scenarios: vegetation leachate is an important source of C for microbes in thawing soil; or vegetation leachate is irrelevant next to the large background C, N, and P pools in thaw soil solution. We assessed these potential outcomes by making vegetation leachate from frozen vegetation and litter in four Arctic ecosystems that have a variety of litter quality and soil C, N, and P contents; one of these ecosystems included a disturbance recovery chronosequence that allowed us to test our second hypothesis that thaw leachate response would be enhanced in disturbed ecosystems. We added water or vegetation leachate to intact, frozen, winter soil cores and incubated the cores through thaw. We measured soil respiration throughout, and soil solution and microbial biomass C, N, and P pools and gross N mineralization immediately after a thaw incubation (−10 to 2°C) lasting 6 days. Vegetation leachate varied strongly by ecosystem in C, N, and P quantity and stoichiometry. Regardless, all vegetated ecosystems responded to leachate additions at thaw with an increase in the microbial biomass phosphate flush and an increase in soil solution carbon and nitrogen, implying a selective microbial uptake of phosphate from plant and litter leachate at thaw. This response to leachate additions was absent in recently disturbed, exposed mineral soil but otherwise did not differ between disturbed and undisturbed ecosystems. The selective uptake of P by microbes implies either thaw microbial P limitation or thaw microbial P uptake opportunism, and that spring thaw is an important time for P retention in several Arctic ecosystems

    Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils

    No full text
    PublishedIncreasing temperatures in northern high latitudes are causing permafrost to thaw1, making large amounts of previously frozen organic matter vulnerable to microbial decomposition2. Permafrost thaw also creates a fragmented landscape of drier and wetter soil conditions3, 4 that determine the amount and form (carbon dioxide (CO2), or methane (CH4)) of carbon (C) released to the atmosphere. The rate and form of C release control the magnitude of the permafrost C feedback, so their relative contribution with a warming climate remains unclear5, 6. We quantified the effect of increasing temperature and changes from aerobic to anaerobic soil conditions using 25 soil incubation studies from the permafrost zone. Here we show, using two separate meta-analyses, that a 10 °C increase in incubation temperature increased C release by a factor of 2.0 (95% confidence interval (CI), 1.8 to 2.2). Under aerobic incubation conditions, soils released 3.4 (95% CI, 2.2 to 5.2) times more C than under anaerobic conditions. Even when accounting for the higher heat trapping capacity of CH4, soils released 2.3 (95% CI, 1.5 to 3.4) times more C under aerobic conditions. These results imply that permafrost ecosystems thawing under aerobic conditions and releasing CO2 will strengthen the permafrost C feedback more than waterlogged systems releasing CO2 and CH4 for a given amount of C.Financial support was provided by the National Science Foundation Vulnerability of Permafrost Carbon Research Coordination Network Grant no. 955713 with continued support from the National Science Foundation Research Synthesis, and Knowledge Transfer in a Changing Arctic: Science Support for the Study of Environmental Arctic Change Grant no. 1331083. Author contributions were also supported by grants to individuals: Department of Energy, Office of Biological and Environmental Research, Terrestrial Ecosystem Science (TES) Program (DE-SC0006982) to E.A.G.S.; UK Natural Environment Research Council funding to I.P.H. and C.E.-A. (NE/K000179/1); German Research Foundation (DFG, Excellence cluster CliSAP) to C.K.; Department of Ecosystem Biology, Grant agency of South Bohemian University, GAJU project no. 146/2013/P and GAJU project no. 146/2013/D to H.S.; National Science Foundation Office of Polar Programs (1312402) to S.M.N.; National Science Foundation Division of Environmental Biology (0423385) and National Science Foundation Division of Environmental Biology (1026843), both to the Marine Biological Laboratory, Woods Hole, Massachusetts; additionally, the Next-Generation Ecosystem Experiments in the Arctic (NGEE Arctic) project is supported by the Biological and Environmental Research programme in the US Department of Energy (DOE) Office of Science. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the DOE under Contract no. DE-AC05-00OR22725. Support for C.B. came from European Union (FP-7-ENV-2011, project PAGE21, contract no. 282700), Academy of Finland (project CryoN, decision no. 132 045), Academy of Finland (project COUP, decision no. 291691; part of the European Union Joint Programming Initiative, JPI Climate), strategic funding of the University of Eastern Finland (project FiWER) and Maj and Tor Nessling Foundation and for P.J.M. from Nordic Center of Excellence (project DeFROST)

    Potential impacts of mercury released from thawing permafrost

    No full text
    Mercury (Hg) is a naturally occurring element that bonds with organic matter and, when converted to methylmercury, is a potent neurotoxicant. Here we estimate potential future releases of Hg from thawing permafrost for low and high greenhouse gas emissions scenarios using a mechanistic model. By 2200, the high emissions scenario shows annual permafrost Hg emissions to the atmosphere comparable to current global anthropogenic emissions. By 2100, simulated Hg concentrations in the Yukon River increase by 14% for the low emissions scenario, but double for the high emissions scenario. Fish Hg concentrations do not exceed United States Environmental Protection Agency guidelines for the low emissions scenario by 2300, but for the high emissions scenario, fish in the Yukon River exceed EPA guidelines by 2050. Our results indicate minimal impacts to Hg concentrations in water and fish for the low emissions scenario and high impacts for the high emissions scenario
    corecore