20 research outputs found

    Suppression of TGFβ-Induced Epithelial-Mesenchymal Transition Like Phenotype by a PIAS1 Regulated Sumoylation Pathway in NMuMG Epithelial Cells

    Get PDF
    Epithelial-mesenchymal-transition (EMT) is a fundamental cellular process that is critical for normal development and tumor metastasis. The transforming growth factor beta (TGFβ) is a potent inducer of EMT like effects, but the mechanisms that regulate TGFβ-induced EMT remain incompletely understood. Using the widely employed NMuMG mammary epithelial cells as a model to study TGFβ-induced EMT, we report that TGFβ downregulates the levels of the SUMO E3 ligase PIAS1 in cells undergoing EMT. Gain and loss of function analyses indicate that PIAS1 acts in a SUMO ligase dependent manner to suppress the ability of TGFβ to induce EMT in these cells. We also find that TGFβ inhibits sumoylation of the PIAS1 substrate SnoN, a transcriptional regulator that antagonizes TGFβ-induced EMT. Accordingly, loss of function mutations of SnoN sumoylation impair the ability of SnoN to inhibit TGFβ-induced EMT in NMuMG cells. Collectively, our findings suggest that PIAS1 is a novel negative regulator of EMT and reveal that inhibition of the PIAS1-SnoN sumoylation pathway represents a key mechanism by which TGFβ induces EMT, with important implications in normal development and tumor metastasis

    Elevation of the antifibrotic peptide N-acetyl-seryl-aspartyl-lysyl-proline: a blood pressure-independent beneficial effect of angiotensin I-converting enzyme inhibitors

    Get PDF
    Blockade of the renin-angiotensin system (RAS) is well recognized as an essential therapy in hypertensive, heart, and kidney diseases. There are several classes of drugs that block the RAS; these drugs are known to exhibit antifibrotic action. An analysis of the molecular mechanisms of action for these drugs can reveal potential differences in their antifibrotic roles. In this review, we discuss the antifibrotic action of RAS blockade with an emphasis on the potential importance of angiotensin I-converting enzyme (ACE) inhibition associated with the antifibrotic peptide N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP)

    Venous identity requires BMP signalling through ALK3

    Get PDF
    Venous endothelial cells are molecularly and functionally distinct from their arterial counterparts. Although veins are often considered the default endothelial state, genetic manipulations can modulate both acquisition and loss of venous fate, suggesting that venous identity is the result of active transcriptional regulation. However, little is known about this process. Here we show that BMP signalling controls venous identity via the ALK3/BMPR1A receptor and SMAD1/SMAD5. Perturbations to TGF-β and BMP signalling in mice and zebrafish result in aberrant vein formation and loss of expression of the venous-specific gene Ephb4, with no effect on arterial identity. Analysis of a venous endothelium-specific enhancer for Ephb4 shows enriched binding of SMAD1/5 and a requirement for SMAD binding motifs. Further, our results demonstrate that BMP/SMAD-mediated Ephb4 expression requires the venous-enriched BMP type I receptor ALK3/BMPR1A. Together, our analysis demonstrates a requirement for BMP signalling in the establishment of Ephb4 expression and the venous vasculature

    Snail regulates BMP and TGF beta pathways to control the differentiation status of glioma-initiating cells

    No full text
    Glioblastoma multiforme is a brain malignancy characterized by high heterogeneity, invasiveness, and resistance to current therapies, attributes related to the occurrence of glioma stem cells (GSCs). Transforming growth factor beta (TGF beta) promotes self-renewal and bone morphogenetic protein (BMP) induces differentiation of GSCs. BMP7 induces the transcription factor Snail to promote astrocytic differentiation in GSCs and suppress tumor growth in vivo. We demonstrate that Snail represses stemness in GSCs. Snail interacts with SMAD signaling mediators, generates a positive feedback loop of BMP signaling and transcriptionally represses the TGFB1 gene, decreasing TGF beta 1 signaling activity. Exogenous TGF beta 1 counteracts Snail function in vitro, and in vivo promotes proliferation and re-expression of Nestin, confirming the importance of TGFB1 gene repression by Snail. In conclusion, novel insight highlights mechanisms whereby Snail differentially regulates the activity of the opposing BMP and TGF beta pathways, thus promoting an astrocytic fate switch and repressing stemness in GSCs.Andra och tredje författare delar andra författarskapet.</p

    Size-dependent response of tropical wetland fish communities to changes in vegetation cover and habitat connectivity

    No full text
    Context: The replacement of native vegetation by exotic grasses for livestock production is driving landscape homogenization, habitat fragmentation and reducing connectivity between habitat patches in floodplains ecosystems. Objective: In this context we examined how changes in native and exotic vegetation cover, connectivity and water depth affect the attributes of the small [standard length (SL) &lt; 80 mm as adults] and large-sized fish assemblages (SL ≥ 80 mm as adults). Method: We assessed the effects of water depth, exotic and native vegetation cover and habitat connectivity on the abundance, species richness, body size and biomass of fish assemblages in a 25 km2 area of the seasonal habitats of the Pantanal wetland over 5 years. Results: We showed that fish assemblage response to meso-scale variation in water depth, vegetation cover and habitat connectivity in seasonal habitats is size-dependent. The gradient from exotic to natural vegetation cover did not affect the assemblages of small-sized fish, which were mostly regulated by water depth, habitat connectivity and the gradient from grassland to forest. However, besides being affected by water depth and habitat connectivity, large-sized fish were also affected by the gradient from exotic to natural vegetation cover. Conclusion: Our results indicate that transformations in the landscape and changes in the dynamics of inundation may have negative consequences for the long-term persistence of fish assemblages in the Pantanal wetlands. © 2015, Springer Science+Business Media Dordrecht

    Role for Transforming Growth Factor-β

    No full text
    corecore