165 research outputs found

    EEG Signal Processing and Classification for the Novel Tactile-Force Brain-Computer Interface Paradigm

    Full text link
    The presented study explores the extent to which tactile-force stimulus delivered to a hand holding a joystick can serve as a platform for a brain computer interface (BCI). The four pressure directions are used to evoke tactile brain potential responses, thus defining a tactile-force brain computer interface (tfBCI). We present brain signal processing and classification procedures leading to successful interfacing results. Experimental results with seven subjects performing online BCI experiments provide a validation of the hand location tfBCI paradigm, while the feasibility of the concept is illuminated through remarkable information-transfer rates.Comment: 6 pages (in conference proceedings original version); 6 figures, submitted to The 9th International Conference on Signal Image Technology & Internet Based Systems, December 2-5, 2013, Kyoto, Japan; to be available at IEEE Xplore; IEEE Copyright 201

    LC/MS Analysis of Tetrodotoxin and Its Deoxy Analogs in the Marine Puffer Fish Fugu niphobles from the Southern Coast of Korea, and in the Brackishwater Puffer Fishes Tetraodon nigroviridis and Tetraodon biocellatus from Southeast Asia

    Get PDF
    Tetrodotoxin (TTX) and its deoxy analogs, 5-deoxyTTX, 11-deoxyTTX, 6,11-dideoxyTTX, and 5,6,11-trideoxyTTX, were quantified in the tissues of three female and three male specimens of the marine puffer fish, Fugu niphobles, from the southern coast of Korea, and in the whole body of the brackishwater puffer fishes, Tetraodon nigroviridis (12 specimens) and Tetrodon biocellatus (three specimens) from Southeast Asia using LC/MS in single ion mode (SIM). Identification of these four deoxy analogs in the ovarian tissue of F. niphobles were further confirmed by LC/MS/MS. TTX and 5,6,11-trideoxyTTX were detected in all three puffer fish species as the major TTX analogs, similar to Japanese Fugu pardalis. While 6,11-dideoxyTTX was also found to be a major analog in almost all tissues of Korean F. niphobles, this analog was minor in the two Tetraodon species and Japanese F. pardalis. Among the tissues of F. niphobles, the concentrations of TTXs were highest in the ovaries (female) and skin (female and male)

    Microresonator isolators and circulators based on the intrinsic nonreciprocity of the Kerr effect

    Get PDF
    Nonreciprocal light propagation is important in many applications, ranging from optical telecommunications to integrated photonics. A simple way to achieve optical nonreciprocity is to use the nonlinear interaction between counterpropagating light in a Kerr medium. Within a ring resonator, this leads to spontaneous symmetry breaking, resulting in light of a given frequency circulating in one direction, but not in both directions simultaneously. In this work, we demonstrate that this effect can be used to realize optical isolators and circulators based on a single ultra-high

    A wide spectrum of clinical and brain MRI findings in patients with SLC19A3 mutations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>SLC19A3 (solute carrier family 19, member 3) is a thiamin transporter with 12 transmembrane domains. Homozygous or compound heterozygous mutations in <it>SLC19A3 </it>cause two distinct clinical phenotypes, biotin-responsive basal ganglia disease and Wernicke's-like encephalopathy. Biotin and/or thiamin are effective therapies for both diseases.</p> <p>Methods</p> <p>We conducted on the detailed clinical, brain MRI and molecular genetic analysis of four Japanese patients in a Japanese pedigree who presented with epileptic spasms in early infancy, severe psychomotor retardation, and characteristic brain MRI findings of progressive brain atrophy and bilateral thalami and basal ganglia lesions.</p> <p>Results</p> <p>Genome-wide linkage analysis revealed a disease locus at chromosome 2q35-37, which enabled identification of the causative mutation in the gene <it>SLC19A3</it>. A pathogenic homozygous mutation (c.958G > C, [p.E320Q]) in <it>SLC19A3 </it>was identified in all four patients and their parents were heterozygous for the mutation. Administration of a high dose of biotin for one year improved neither the neurological symptoms nor the brain MRI findings in one patient.</p> <p>Conclusion</p> <p>Our cases broaden the phenotypic spectrum of disorders associated with <it>SLC19A3 </it>mutations and highlight the potential benefit of biotin and/or thiamin treatments and the need to assess the clinical efficacy of these treatments.</p

    Toxicity of Cultured Bullseye Puffer Fish Sphoeroides annulatus

    Get PDF
    The toxin content in various life cycle stages of tank-cultivated bullseye puffer (Sphoeroides annulatus) were analyzed by mouse bioassay and ESI-MS spectrometry analysis. The presence of toxin content was determined in extracts of sperm, eggs, embryo, larvae, post-larvae, juvenile, pre-adult, and adult fish, as well as in food items used during the cultivation of the species. Our findings show that only the muscle of juveniles, the viscera of pre-adults, and muscle, liver, and gonad of adult specimens were slightly toxic (<1 mouse unit). Thus, cultivated S. annulatus, as occurs with other cultivated puffer fish species, does not represent a food safety risk to consumers. This is the first report of toxin analysis covering the complete life stages of a puffer fish under controlled conditions

    Contribution of Intragenic DNA Methylation in Mouse Gametic DNA Methylomes to Establish Oocyte-Specific Heritable Marks

    Get PDF
    Genome-wide dynamic changes in DNA methylation are indispensable for germline development and genomic imprinting in mammals. Here, we report single-base resolution DNA methylome and transcriptome maps of mouse germ cells, generated using whole-genome shotgun bisulfite sequencing and cDNA sequencing (mRNA-seq). Oocyte genomes showed a significant positive correlation between mRNA transcript levels and methylation of the transcribed region. Sperm genomes had nearly complete coverage of methylation, except in the CpG-rich regions, and showed a significant negative correlation between gene expression and promoter methylation. Thus, these methylome maps revealed that oocytes and sperms are widely different in the extent and distribution of DNA methylation. Furthermore, a comparison of oocyte and sperm methylomes identified more than 1,600 CpG islands differentially methylated in oocytes and sperm (germline differentially methylated regions, gDMRs), in addition to the known imprinting control regions (ICRs). About half of these differentially methylated DNA sequences appear to be at least partially resistant to the global DNA demethylation that occurs during preimplantation development. In the absence of Dnmt3L, neither methylation of most oocyte-methylated gDMRs nor intragenic methylation was observed. There was also genome-wide hypomethylation, and partial methylation at particular retrotransposons, while maintaining global gene expression, in oocytes. Along with the identification of the many Dnmt3L-dependent gDMRs at intragenic regions, the present results suggest that oocyte methylation can be divided into 2 types: Dnmt3L-dependent methylation, which is required for maternal methylation imprinting, and Dnmt3L-independent methylation, which might be essential for endogenous retroviral DNA silencing. The present data provide entirely new perspectives on the evaluation of epigenetic markers in germline cells

    Natural killer cells are crucial for the efficacy of Icon (factor VII/human IgG1 Fc) immunotherapy in human tongue cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Icon is a novel, dual neovascular- and cancer cell-targeting immunotherapeutic agent and has shown efficacy in the treatment of cancer, wet form macular degeneration and endometriosis. However, its underlying mechanism remains to be investigated. The objective of this study is to elucidate the mechanism of Icon immunotherapy in cancer using a squamous carcinoma human tongue cancer line TCA8113 <it>in vitro </it>and <it>in vivo </it>in severe combined immunodeficiency (SCID) mice.</p> <p>Results</p> <p>We showed that Icon, as a chimeric factor VII and human IgG1 Fc immunoconjugate, could separately induce murine natural killer (NK) cells and activate complement to kill TCA8113 cancer cells <it>in vitro </it>via antibody dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). However, Icon-NK ADCC had a significantly stronger effect than that of Icon-CDC. Moreover, Icon could completely eradicate established human tongue tumour xenografts <it>in vivo </it>in the CB-17 strain of SCID mice that have functional NK cells at a normal level, whereas it was less effective in SCID/Beige mice that do not have functional NK cells.</p> <p>Conclusions</p> <p>We conclude that NK cells are crucial for the efficacy of Icon immunotherapy in the treatment of cancer. The results also suggest that impaired NK level/activity could contribute to the resistance to therapeutic antibodies that are currently under investigation in preclinical and clinical studies.</p
    corecore