151 research outputs found

    New particle formation in air mass transported between two measurement sites in Northern Finland

    Get PDF
    This study covers four years of aerosol number size distribution data from Pallas and Värriö sites 250 km apart from each other in Northern Finland and compares new particle formation events between these sites. In air masses of eastern origin almost all events were observed to start earlier at the eastern station Värriö, whereas in air masses of western origin most of the events were observed to start earlier at the western station Pallas. This demonstrates that particle formation in a certain air mass type depends not only on the diurnal variation of the parameters causing the phenomenon (such as photochemistry) but also on some properties carried by the air mass itself. The correlation in growth rates between the two sites was relatively good, which suggests that the amount of condensable vapour causing the growth must have been at about the same level in both sites. The condensation sink was frequently much higher at the downwind station. It seems that secondary particle formation related to biogenic sources dominate in many cases over the particle sinks during the air mass transport between the sites. Two cases of transport from Pallas to Värriö were further analysed with an aerosol dynamics model. The model was able to reproduce the observed nucleation events 250 km down-wind at Värriö but revealed some differences between the two cases. The simulated nucleation rates were in both cases similar but the organic concentration profiles that best reproduced the observations were different in the two cases indicating that divergent formation reactions may dominate under different conditions. The simulations also suggested that organic compounds were the main contributor to new particle growth, which offers a tentative hypothesis to the distinct features of new particles at the two sites: Air masses arriving from the Atlantic Ocean typically spent approximately only ten hours over land before arriving at Pallas, and thus the time for the organic vapours to accumulate in the air and to interact with the particles is relatively short. This can lead to low nucleation mode growth rates and even to suppression of detectable particle formation event due to efficient scavenging of newly formed clusters, as was observed in the case studies

    Optical and microphysical characterization of aerosol layers over South Africa by means of multi-wavelength depolarization and Raman lidar measurements

    Get PDF
    © 2016 The Author(s). Published by Copernicus Publications on behalf of the European Geosciences Union. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence ( https://creativecommons.org/licenses/by/3.0/ ), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.Optical and microphysical properties of different aerosol types over South Africa measured with a multi-wavelength polarization Raman lidar are presented. This study could assist in bridging existing gaps relating to aerosol properties over South Africa, since limited long-term data of this type is available for this region. The observations were performed under the framework of the EUCAARI campaign in Elandsfontein. The multi-wavelength PollyXT Raman lidar system was used to determine vertical profiles of the aerosol optical properties, i.e. extinction and backscatter coefficients, Ångström exponents, lidar ratio and depolarization ratio. The mean microphysical aerosol properties, i.e. effective radius and single scattering albedo were retrieved with an advanced inversion algorithm. Clear differences were observed for the intensive optical properties of atmospheric layers of biomass burning and urban/industrial aerosols. Our results reveal a wide range of optical and microphysical parameters for biomass burning aerosols. This indicates probable mixing of biomass burning aerosols with desert dust particles, as well as the possible continuous influence of urban/industrial aerosol load in the region. The lidar ratio at 355 nm, the lidar ratio at 532 nm, the linear particle depolarization ratio at 355 nm and the extinction-related Ångström exponent from 355 to 532 nm were 52 ± 7 sr; 41 ± 13 sr; 0.9 ± 0.4 % and 2.3 ± 0.5, respectively for urban / industrial aerosols, while these values were 92 ± 10 sr; 75 ± 14; 3.2 ± 1.3 % and 1.7 ± 0.3 respectively for biomass burning aerosols layers. Biomass burning particles are larger and slightly less absorbing compared to urban / industrial aerosols. The particle effective radius were found to be 0.10 ± 0.03 μm, 0.17 ± 0.04 μm and 0.13 ± 0.03 μm for urban/industrial, biomass burning, and mixed aerosols, respectively, while the single scattering albedo at 532 nm were 0.87 ± 0.06, 0.90 ± 0.06, and 0.88 ± 0.07 (at 532 nm), respectively for these three types of aerosols. Our results were within the same range of previously reported values.Peer reviewedFinal Published versio

    Measurements of optical properties of atmospheric aerosols in Northern Finland

    Get PDF
    International audienceThree years of continuous measurements of aerosol optical properties and simultaneous aerosol number size distribution measurements at Pallas GAW station, a remote subarctic site in the northern border of the boreal forest zone, have been analysed. The scattering coefficient at 550 nm varied from 0.2 to 94.4 Mm?1 with an average of 7.1±8.6 Mm?1. Both the scattering and backscattering coefficients had a clear seasonal cycle with an autumn minimum and a 4?5 times higher summer maximum. The scattering was dominated by submicron aerosols and especially so during late summer and autumn. The Ångström exponent had a clear seasonal pattern with maximum values in late summer and minimum values during wintertime. The highest hemispheric backscattering fraction values were observed in autumn, indicating clean air with few scattering particles and a particle size distribution strongly dominated by ultrafine particles. To analyse the influence of air mass origin on the aerosol optical properties a trajectory climatology was applied to the Pallas aerosol data. The most polluted trajectory patterns represented air masses from the Kola Peninsula, Scandinavia and Russia as well as long-range transport from Britain and Eastern Europe. These air masses had the largest average scattering and backscattering coefficients for all seasons. Higher than average values of the Ångström exponent were also observed in connection with transport from these areas

    One year boundary layer aerosol size distribution data from five nordic background stations

    Get PDF
    International audienceSize distribution measurements performed at five different stations have been investigated during a one-year period between 01 June 2000 and 31 May 2001 with focus on diurnal, seasonal and geographical differences of size distribution properties. The stations involved cover a large geographical area ranging from the Finnish Lapland (67º N) down to southern Sweden (56º N) in the order Värriö, Pallas, Hyytiälä, Aspvreten and Vavihill. The shape of the size distribution is typically bimodal during winter with a larger fraction of accumulation mode particles compared to the other seasons. Highest Aitken mode concentration is found during summer and spring during the year of study. The maximum of nucleation events occur during the spring months at all stations. Nucleation events occur during other months as well, although not as frequently. Large differences were found between different categories of stations. Northerly located stations such as Pallas and Värriö presented well-separated Aitken and accumulation modes, while the two modes often overlap significantly at the two southernmost stations Vavihill and Aspvreten. A method to cluster trajectories was used to analyse the impact of long-range transport on the observed aerosol properties. Clusters of trajectories arriving from the continent were clearly associated with size distributions shifted towards the accumulation mode. This feature was more pronounced the further south the station was located. Marine- or Arctic-type clusters were associated with large variability in the nuclei size ranges. A quasi-lagrangian approach was used to investigate transport related changes in the aerosol properties. Typically, an increase in especially Aitken mode concentrations was observed when advection from the north occurs, i.e. allowing more continental influence on the aerosol when comparing the different measurement sites. When trajectory clusters arrive to the stations from SW, a gradual decrease in number concentration is experienced in all modes as latitude of measurement site increases

    Seasonal cycle and source analyses of aerosol optical properties in a semi-urban environment at Puijo station in Eastern Finland

    Get PDF
    We introduce a four-year (in 2006–2010) continuous data set of aerosol optical properties at Puijo in Kuopio, Finland. We study the annual and diurnal variation of the aerosol scattering and absorption coefficients, hemispheric backscattering fraction, scattering Ångström exponent, and single scattering albedo, whose median values over this period were 7.2 Mm<sup>−1</sup> (at 550 nm), 1.0 Mm<sup>−1</sup> (at 637 nm), 0.15, 1.93 (between 450 and 550 nm), and 0.85, respectively. The scattering coefficient peaked in the spring and autumn, being 2–4 times those in the summer and winter. An exception was the summer of 2010, when the scattering coefficient was elevated to ~300 Mm<sup>−1</sup> by plumes from forest fires in Russia. The absorption coefficient peaked in the winter when soot-containing particles derived from biomass burning were present. The higher relative absorption coefficients resulted in lower single scattering albedo in winter. The optical properties varied also with wind direction and time of the day, indicating the effect of the local pollutant sources and the age of the particles. Peak values in the single scattering albedo were observed when the wind blew from a paper mill and from the sector without local pollutant sources. These observations were linked, respectively, to the sulphate-rich aerosol from the paper mill and the oxygenated organics in the aged aerosol, which both are known to increase the scattering characteristics of aerosols. Decreases in the single scattering albedo in the morning and afternoon, distinct in the summertime, were linked to the increased traffic density at these hours. The scattering and absorption coefficients of residential and long-range transported aerosol (two separate cloud events) were found to be decreased by clouds. The effect was stronger for the scattering than absorption, indicating preferential activation of the more hygroscopic aerosol with higher scattering characteristics

    Profiling water vapor mixing ratios in Finland by means of a Raman lidar, a satellite and a model

    Get PDF
    We present tropospheric water vapor profiles measured with a Raman lidar during three field campaigns held in Finland. Co-located radio soundings are available throughout the period for the calibration of the lidar signals. We investigate the possibility of calibrating the lidar water vapor profiles in the absence of co-existing on-site soundings using water vapor profiles from the combined Advanced InfraRed Sounder (AIRS) and the Advanced Microwave Sounding Unit (AMSU) satellite product; the Aire Limitee Adaptation dynamique Developpement INternational and High Resolution Limited Area Model (ALADIN/HIRLAM) numerical weather prediction (NWP) system, and the nearest radio sounding station located 100 km away from the lidar site (only for the permanent location of the lidar). The uncertainties of the calibration factor derived from the soundings, the satellite and the model data are <2.8, 7.4 and 3.9 %, respectively. We also include water vapor mixing ratio intercomparisons between the radio soundings and the various instruments/model for the period of the campaigns. A good agreement is observed for all comparisons with relative errors that do not exceed 50% up to 8 km altitude in most cases. A 4-year seasonal analysis of vertical water vapor is also presented for the Kuopio site in Finland. During winter months, the air in Kuopio is dry (1.15 +/- 0.40 g kg(-1)); during summer it is wet (5.54 +/- 1.02 g kg(-1)); and at other times, the air is in an intermediate state. These are averaged values over the lowest 2 km in the atmosphere. Above that height a quick decrease in water vapor mixing ratios is observed, except during summer months where favorable atmospheric conditions enable higher mixing ratio values at higher altitudes. Lastly, the seasonal change in disagreement between the lidar and the model has been studied. The analysis showed that, on average, the model underestimates water vapor mixing ratios at high altitudes during spring and summer.Peer reviewe

    Evaluating the Assumptions of Surface Reflectance and Aerosol Type Selection Within the MODIS Aerosol Retrieval Over Land: The Problem of Dust Type Selection

    Get PDF
    Aerosol Optical Depth (AOD) and Angstrom exponent (AE) values derived with the MODIS retrieval algorithm over land (Collection 5) are compared with ground based sun photometer measurements at eleven sites spanning the globe. Although, in general, total AOD compares well at these sites (R2 values generally over 0.8), there are cases (from 2 to 67% of the measurements depending on the site) where MODIS clearly retrieves the wrong spectral dependence, and hence, an unrealistic AE value. Some of these poor AE retrievals are due to the aerosol signal being too small (total AOD<0.3) but in other cases the AOD should have been high enough to derive accurate AE. However, in these cases, MODIS indicates AE values close to 0.6 and zero fine model weighting (FMW), i.e. dust model provides the best fitting to the MODIS observed reflectance. Yet, according to evidence from the collocated sun photometer measurements and back-trajectory analyses, there should be no dust present. This indicates that the assumptions about aerosol model and surface properties made by the MODIS algorithm may have been incorrect. Here we focus on problems related to parameterization of the land-surface optical properties in the algorithm, in particular the relationship between the surface reflectance at 660 and 2130 nm

    Detection and characterization of birch pollen in the atmosphere using a multiwavelength Raman polarization lidar and Hirst-type pollen sampler in Finland

    Get PDF
    We present the results of birch pollen characterization using lidar and in situ measurements based on a 11 d pollination period from 5 to 15 May 2016 at the European Aerosol Research Lidar Network (EARLINET) station in Vehmasmäki (Kuopio; 62∘44′ N, 27∘33′ E), Finland. The ground-based multiwavelength Raman polarization lidar PollyXT performed continuous measurements at this rural forest site and has been combined with a Hirst-type volumetric air sampler, which measured the pollen type and concentration at roof level (4 m). The period was separated into two parts due to different atmospheric conditions and detected pollen types. During the first period, high concentrations of birch pollen were measured with a maximum 2 h average pollen concentration of 3700 grains m−3. Other pollen types represented less than 3 % of the total pollen count. In observed pollen layers, the mean particle depolarization ratio at 532 nm was 10±6 % during the intense birch pollination period. Mean lidar ratios were found to be 45±7 and 55±16 sr at 355 and 532 nm, respectively. During the second period, birch pollen was still dominant, but a significant contribution of spruce pollen was observed as well. Spruce pollen grains are highly nonspherical, leading to a larger mean depolarization ratio of 26±7 % for the birch–spruce pollen mixture. Furthermore, higher lidar ratios were observed during this period with mean values of 60±3 and 62±10 sr at 355 and 532 nm, respectively. The presented study shows the potential of the particle depolarization ratio to track pollen grains in the atmosphere.</p

    Planetary boundary layer height by means of lidar and numerical simulations over New Delhi, India

    Get PDF
    In this work, the height of the planetary boundary layer (PBLH) is investigated over Gwal Pahari (Gual Pahari), New Delhi, for almost a year. To this end, ground-based measurements from a multiwavelength Raman lidar were used. The modified wavelet covariance transform (WCT) method was utilized for PBLH retrievals. Results were compared to data from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) and the Weather Research and Forecasting (WRF) model. In order to examine the difficulties of PBLH detection from lidar, we analyzed three cases of PBLH diurnal evolution under different meteorological and aerosol load conditions. In the presence of multiple aerosol layers, the employed algorithm exhibited high efficiency (r=0.9) in the attribution of PBLH, whereas weak aerosol gradients induced high variability in the PBLH. A sensitivity analysis corroborated the stability of the utilized methodology. The comparison with CALIPSO observations yielded satisfying results (r=0.8), with CALIPSO slightly overestimating the PBLH. Due to the relatively warmer and drier winter and, correspondingly, colder and rainier pre-monsoon season, the seasonal PBLH cycle during the measurement period was slightly weaker than the cycle expected from long-term climate records.</p
    • …
    corecore