255 research outputs found
Conversion of barley SNPs into PCR-based markers using dCAPS method
Molecular genetic research relies heavily on the ability to detect polymorphisms in DNA. Single nucleotide polymorphisms (SNPs) are the most frequent form of DNA variation in the genome. In combination with a PCR assay, the corresponding SNP can be analyzed as a derived cleaved amplified polymorphic sequence (dCAPS) marker. The dCAPS method exploits the well-known specificity of a restriction endonuclease for its recognition site and can be used to virtually detect any SNP. Here, we describe the use of the dCAPS method for detecting single-nucleotide changes by means of a barley EST, CK569932, PCR-based marker
Crop genetics research in Asia: improving food security and nutrition
Breakthroughs in genomics research in recent decades have
fundamentally changed the landscape of crop science at a
number of fronts:
(1) High-quality reference genome sequences have become
available for most of the crops which have provided
the foundation for understanding the genome and for
functional genomic studies.
(2) Large numbers of genes have been identified and functionally
characterized for many important agronomic
traits, which have greatly enhanced the understanding
of the regulatory mechanisms and the underlying biological
processes for the making of the traits.
(3) Large-scale resequencing of the diverse germplasms
and genome-wide association studies (GWAS) have
provided assessment about the extent of genome diversity,
the genetic architecture, and association between
the phenotype and DNA sequence polymorphisms in
many crop species.
(4) Systems of breeding technologies based on the advance
in genomic studies, or genomic breeding, have now
been developed including novel goals in response to
the evolving demands of the consumers, upgraded definitions
of traits to be improved, techniques for whole
genome selection, and varietal designs for the implementation
Characterization and genetic mapping of eceriferum-ym (cer-ym), a cutin deficient barley mutant with impaired leaf water retention capacity.
The cuticle covers the aerial parts of land plants, where it serves many important functions, including water retention. Here, a recessive cuticle mutant, eceriferum-ym (cer-ym), of Hordeum vulgare L. (barley) showed abnormally glossy spikes, sheaths, and leaves. The cer-ym mutant plant detached from its root system was hypersensitive to desiccation treatment compared with wild type plants, and detached leaves of mutant lost 41.8% of their initial weight after 1 h of dehydration under laboratory conditions, while that of the wild type plants lost only 7.1%. Stomata function was not affected by the mutation, but the mutant leaves showed increased cuticular permeability to water, suggesting a defective leaf cuticle, which was confirmed by toluidine blue staining. The mutant leaves showed a substantial reduction in the amounts of the major cutin monomers and a slight increase in the main wax component, suggesting that the enhanced cuticle permeability was a consequence of cutin deficiency. cer-ym was mapped within a 0.8 cM interval between EST marker AK370363 and AK251484, a pericentromeric region on chromosome 4H. The results indicate that the desiccation sensitivity of cer-ym is caused by a defect in leaf cutin, and that cer-ym is located in a chromosome 4H pericentromeric region
Duplication of a well-conserved homeodomain-leucine zipper transcription factor gene in barley generates a copy with more specific functions
Three spikelets are formed at each rachis node of the cultivated barley (Hordeum vulgare ssp. vulgare) spike. In two-rowed barley, the central one is fertile and the two lateral ones are sterile, whereas in the six-rowed type, all three are fertile. This characteristic is determined by the allelic constitution at the six-rowed spike 1 (vrs1) locus on the long arm of chromosome 2H, with the recessive allele (vrs1) being responsible for the six-rowed phenotype. The Vrs1 (HvHox1) gene encodes a homeodomain-leucine zipper (HD-Zip) transcription factor. Here, we show that the Vrs1 gene evolved in the Poaceae via a duplication, with a second copy of the gene, HvHox2, present on the short arm of chromosome 2H. Micro-collinearity and polypeptide sequences were both well conserved between HvHox2 and its Poaceae orthologs, but Vrs1 is unique to the barley tribe. The Vrs1 gene product lacks a motif which is conserved among the HvHox2 orthologs. A phylogenetic analysis demonstrated that Vrs1 and HvHox2 must have diverged after the separation of Brachypodium distachyon from the Pooideae and suggests that Vrs1 arose following the duplication of HvHox2, and acquired its new function during the evolution of the barley tribe. HvHox2 was expressed in all organs examined but Vrs1 was predominantly expressed in immature inflorescence
The Domestication Syndrome Genes Responsible for the Major Changes in Plant Form in the Triticeae Crops
The process of crop domestication began 10,000 years ago in the transition of early humans from hunter/gatherers to pastoralists/farmers. Recent research has revealed the identity of some of the main genes responsible for domestication. Two of the major domestication events in barley were (i) the failure of the spike to disarticulate and (ii) the six-rowed spike. The former mutation increased grain yield by preventing grain loss after maturity, while the latter resulted in an up to 3-fold increase in yield potential. Here we provide an overview of the disarticulation systems and inflorescence characteristics, along with the genes underlying these traits, occurring in the Triticeae tribe
Moments of vicious walkers and M\"obius graph expansions
A system of Brownian motions in one-dimension all started from the origin and
conditioned never to collide with each other in a given finite time-interval
is studied. The spatial distribution of such vicious walkers can be
described by using the repulsive eigenvalue-statistics of random Hermitian
matrices and it was shown that the present vicious walker model exhibits a
transition from the Gaussian unitary ensemble (GUE) statistics to the Gaussian
orthogonal ensemble (GOE) statistics as the time is going on from 0 to .
In the present paper, we characterize this GUE-to-GOE transition by presenting
the graphical expansion formula for the moments of positions of vicious
walkers. In the GUE limit , only the ribbon graphs contribute and the
problem is reduced to the classification of orientable surfaces by genus.
Following the time evolution of the vicious walkers, however, the graphs with
twisted ribbons, called M\"obius graphs, increase their contribution to our
expansion formula, and we have to deal with the topology of non-orientable
surfaces. Application of the recent exact result of dynamical correlation
functions yields closed expressions for the coefficients in the M\"obius
expansion using the Stirling numbers of the first kind.Comment: REVTeX4, 11 pages, 1 figure. v.2: calculations of the Green function
and references added. v.3: minor additions and corrections made for
publication in Phys.Rev.
Vicious walk with a wall, noncolliding meanders, and chiral and Bogoliubov-deGennes random matrices
Spatially and temporally inhomogeneous evolution of one-dimensional vicious
walkers with wall restriction is studied. We show that its continuum version is
equivalent with a noncolliding system of stochastic processes called Brownian
meanders. Here the Brownian meander is a temporally inhomogeneous process
introduced by Yor as a transform of the Bessel process that is a motion of
radial coordinate of the three-dimensional Brownian motion represented in the
spherical coordinates. It is proved that the spatial distribution of vicious
walkers with a wall at the origin can be described by the eigenvalue-statistics
of Gaussian ensembles of Bogoliubov-deGennes Hamiltonians of the mean-field
theory of superconductivity, which have the particle-hole symmetry. We report
that the time evolution of the present stochastic process is fully
characterized by the change of symmetry classes from the type to the type
I in the nonstandard classes of random matrix theory of Altland and
Zirnbauer. The relation between the non-colliding systems of the generalized
meanders of Yor, which are associated with the even-dimensional Bessel
processes, and the chiral random matrix theory is also clarified.Comment: REVTeX4, 16 pages, 4 figures. v2: some additions and correction
Extreme Suppression of Lateral Floret Development by a Single Amino Acid Change in the VRS1 Transcription Factor
Increasing grain yield is an endless challenge for cereal crop breeding. In barley (Hordeum vulgare), grain number is controlled mainly by Six-rowed spike 1 (Vrs1), which encodes a homeodomain leucine zipper class I transcription factor. However, little is known about the genetic basis of grain size. Here, we show that extreme suppression of lateral florets contributes to enlarged grains in deficiens barley. Through a combination of fine-mapping and resequencing of deficiens mutants, we have identified that a single amino acid substitution at a putative phosphorylation site in VRS1 is responsible for the deficiens phenotype. deficiens mutant alleles confer an increase in grain size, a reduction in plant height, and a significant increase in thousand grain weight in contemporary cultivated germplasm. Haplotype analysis revealed that barley carrying the deficiens allele (Vrs1.t1) originated from two-rowed types carrying the Vrs1.b2 allele, predominantly found in germplasm from northern Africa. In situ hybridization of histone H4, a marker for cell cycle or proliferation, showed weaker expression in the lateral spikelets compared with central spikelets in deficiens. Transcriptome analysis revealed that a number of histone superfamily genes were up-regulated in the deficiens mutant, suggesting that enhanced cell proliferation in the central spikelet may contribute to larger grains. Our data suggest that grain yield can be improved by suppressing the development of specific organs that are not positively involved in sink/source relationships
Mixed model association scans of multi-environmental trial data reveal major loci controlling yield and yield related traits in Hordeum vulgare in Mediterranean environments
An association panel consisting of 185 accessions representative of the barley germplasm cultivated in the Mediterranean basin was used to localise quantitative trait loci (QTL) controlling grain yield and yield related traits. The germplasm set was genotyped with 1,536 SNP markers and tested for associations with phenotypic data gathered over 2 years for a total of 24 year × location combinations under a broad range of environmental conditions. Analysis of multi-environmental trial (MET) data by fitting a mixed model with kinship estimates detected from two to seven QTL for the major components of yield including 1000 kernel weight, grains per spike and spikes per m2, as well as heading date, harvest index and plant height. Several of the associations involved SNPs tightly linked to known major genes determining spike morphology in barley (vrs1 and int-c). Similarly, the largest QTL for heading date co-locates with SNPs linked with eam6, a major locus for heading date in barley for autumn sown conditions. Co-localization of several QTL related to yield components traits suggest that major developmental loci may be linked to most of the associations. This study highlights the potential of association genetics to identify genetic variants controlling complex traits
- …