38 research outputs found

    Activity patterns of tayra (Eira barbara) across their distribution

    Get PDF
    Species' activity patterns are driven by the need to meet basic requirements of food, social interactions, movement, and rest, but often are influenced by a variety of biotic and abiotic factors. We used camera-trap data to describe and compare the activity patterns of the relatively poorly studied tayra (Eira barbara) across 10 populations distributed from the south of Mexico to the north of Argentina, and attempted to identify biotic or abiotic factors that may be associated with variation in level of diurnality. In a subset of sites we also aimed to document potential seasonal variation in activity. We used a kernel density estimator based on the time of independent photographic events to calculate the proportion of diurnal, crepuscular, and nocturnal activity of each population. Tayras were mostly active during diurnal periods (79.31%, 759 records), with a lower proportion of crepuscular activity (18.07%, 173 records) yet we documented some variation in patterns across the 10 study areas (activity overlap coefficient varied from Δ4 = 0.64 to Δ1 = 0.95). In northern localities, activity peaked twice during the day (bimodal) with most activity ocurring in the morning, whereas closer to the geographical equator, activity was constant (unimodal) throughout the day, peaking at midday: activity either was unimodal or bimodal in southern localities. Despite investigating multiple potential abiotic and biotic predictors, only latitude was associated with variation in the proportion of diurnal activity by tayras across its range, with increased diurnal activity closer to the equator. Seasonal comparisons in activity showed a tendency to reduce diurnality in dry versus rainy seasons, but the pattern was not consistently significant. This is the most comprehensive description of tayra activity patterns to date, and lends novel insight into the potential flexibility of the species to adapt to local conditions.Fil: Villafañe Trujillo, Álvaro JosĂ©. Universidad Autonoma de Queretaro.; MĂ©xicoFil: Kolowski, Joseph M.. Instituto de Pesquisas EcolĂłgicas; BrasilFil: Cove, Michael V.. University of Belize; BeliceFil: Medici, Emilia Patricia. Instituto de Pesquisas EcolĂłgicas; BrasilFil: Harmsen, Bart J.. University of Belize; BeliceFil: Foster, Rebbeca J.. University of Belize; BeliceFil: Hidalgo Mihart, Mircea G.. Universidad JuĂĄrez AutĂłnoma de Tabasco,; MĂ©xicoFil: Espinosa, Santiago. Universidad AutĂłnoma de San Luis PotosĂ­; MĂ©xicoFil: RĂ­os Alvear, Gorky. Universidad de Porto; PortugalFil: Reyes Puig, Carolina. Universidad de Porto; PortugalFil: Reyes Puig, Juan Pablo. Universidad de Porto; PortugalFil: Da Silva, Marina Xavier. Universidad Central del Ecuador; EcuadorFil: Paviolo, Agustin Javier. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Nordeste. Instituto de BiologĂ­a Subtropical. Universidad Nacional de Misiones. Instituto de BiologĂ­a Subtropical; ArgentinaFil: Cruz, Paula Andrea. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Nordeste. Instituto de BiologĂ­a Subtropical. Universidad Nacional de Misiones. Instituto de BiologĂ­a Subtropical; ArgentinaFil: LĂłpez GonzĂĄlez, Carlos Alberto. Universidad Autonoma de Queretaro.; MĂ©xic

    An empirical evaluation of camera trap study design: How many, how long and when?

    Get PDF
    Abstract Camera traps deployed in grids or stratified random designs are a well‐established survey tool for wildlife but there has been little evaluation of study design parameters. We used an empirical subsampling approach involving 2,225 camera deployments run at 41 study areas around the world to evaluate three aspects of camera trap study design (number of sites, duration and season of sampling) and their influence on the estimation of three ecological metrics (species richness, occupancy and detection rate) for mammals. We found that 25–35 camera sites were needed for precise estimates of species richness, depending on scale of the study. The precision of species‐level estimates of occupancy (ψ) was highly sensitive to occupancy level, with 0.75) species, but more than 150 camera sites likely needed for rare (ψ < 0.25) species. Species detection rates were more difficult to estimate precisely at the grid level due to spatial heterogeneity, presumably driven by unaccounted habitat variability factors within the study area. Running a camera at a site for 2 weeks was most efficient for detecting new species, but 3–4 weeks were needed for precise estimates of local detection rate, with no gains in precision observed after 1 month. Metrics for all mammal communities were sensitive to seasonality, with 37%–50% of the species at the sites we examined fluctuating significantly in their occupancy or detection rates over the year. This effect was more pronounced in temperate sites, where seasonally sensitive species varied in relative abundance by an average factor of 4–5, and some species were completely absent in one season due to hibernation or migration. We recommend the following guidelines to efficiently obtain precise estimates of species richness, occupancy and detection rates with camera trap arrays: run each camera for 3–5 weeks across 40–60 sites per array. We recommend comparisons of detection rates be model based and include local covariates to help account for small‐scale variation. Furthermore, comparisons across study areas or times must account for seasonality, which could have strong impacts on mammal communities in both tropical and temperate sites

    Ellis-Van Creveld syndrome

    Get PDF
    Ellis-van Creveld syndrome (EVC) is a chondral and ectodermal dysplasia characterized by short ribs, polydactyly, growth retardation, and ectodermal and heart defects. It is a rare disease with approximately 150 cases reported worldwide. The exact prevalence is unknown, but the syndrome seems more common among the Amish community. Prenatal abnormalities (that may be detected by ultrasound examination) include narrow thorax, shortening of long bones, hexadactyly and cardiac defects. After birth, cardinal features are short stature, short ribs, polydactyly, and dysplastic fingernails and teeth. Heart defects, especially abnormalities of atrial septation, occur in about 60% of cases. Cognitive and motor development is normal. This rare condition is inherited as an autosomal recessive trait with variable expression. Mutations of the EVC1 and EVC2 genes, located in a head to head configuration on chromosome 4p16, have been identified as causative. EVC belongs to the short rib-polydactyly group (SRP) and these SRPs, especially type III (Verma-Naumoff syndrome), are discussed in the prenatal differential diagnosis. Postnatally, the essential differential diagnoses include Jeune dystrophy, McKusick-Kaufman syndrome and Weyers syndrome. The management of EVC is multidisciplinary. Management during the neonatal period is mostly symptomatic, involving treatment of the respiratory distress due to narrow chest and heart failure. Orthopedic follow-up is required to manage the bones deformities. Professional dental care should be considered for management of the oral manifestations. Prognosis is linked to the respiratory difficulties in the first months of life due to thoracic narrowness and possible heart defects. Prognosis of the final body height is difficult to predict
    corecore