11,831 research outputs found

    Baryon number and strangeness: signals of a deconfined antecedent

    Full text link
    The correlation between baryon number and strangeness is used to discern the nature of the deconfined matter produced at vanishing chemical potential in high-energy nuclear collisions at the BNL RHIC. Comparisons of results of various phenomenological models with correlations extracted from lattice QCD calculations suggest that a quasi-particle picture applies. At finite baryon densities, such as those encountered at the CERN SPS, it is demonstrated that the presence of a first-order phase transition and the accompanying development of spinodal decomposition would significantly enhance the number of strangeness carriers and the associated fluctuations.Comment: 10 pages, 4 figures, latex, to appear in the proceedings of the Workshop on Correlations and Fluctuations in Relativistic Nuclear collisions, (MIT, April 21-23,2005

    Current Induced Excitations in Cu/Co/Cu Single Ferromagnetic Layer Nanopillars

    Full text link
    Current-induced magnetic excitations in Cu/Co/Cu single layer nanopillars (~50 nm in diameter) have been studied experimentally as a function of Co layer thickness at low temperatures for large applied fields perpendicular to the layers. For asymmetric junctions current induced excitations are observed at high current densities for only one polarity of the current and are absent at the same current densities in symmetric junctions. These observations confirm recent predictions of spin-transfer torque induced spin wave excitations in single layer junctions with a strong asymmetry in the spin accumulation in the leads.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let

    Current-Induced Effective Magnetic Fields in Co/Cu/Co Nanopillars

    Full text link
    We present a method to measure the effective field contribution to spin-transfer-induced interactions between the magnetic layers in a trilayer nanostructure, which enables spin-current effects to be distinguished from the usual charge-current-induced magnetic fields. This technique is demonstrated on submicron Co/Cu/Co nanopillars. The hysteresis loop of one of the magnetic layers in the trilayer is measured as a function of current while the direction of magnetization of the other layer is kept fixed, first in one direction and then in the opposite direction. These measurements show a current-dependent shift of the hysteresis loop which, based on the symmetry of the magnetic response, we associate with spin-transfer. The observed loop-shift with applied current at room temperature is reduced in measurements at 4.2 K. We interprete these results both in terms of a spin-current dependent effective activation barrier for magnetization reversal and a spin-current dependent effective magnetic field. From data at 4.2 K we estimate the magnitude of the spin-transfer induced effective field to be ∼1.5×10−7\sim 1.5 \times 10^{-7} Oe cm2^2/A, about a factor of 5 less than the spin-transfer torque.Comment: 6 pages, 4 figure

    A para-differential renormalization technique for nonlinear dispersive equations

    Full text link
    For \alpha \in (1,2) we prove that the initial-value problem \partial_t u+D^\alpha\partial_x u+\partial_x(u^2/2)=0 on \mathbb{R}_x\times\mathbb{R}_t; u(0)=\phi, is globally well-posed in the space of real-valued L^2-functions. We use a frequency dependent renormalization method to control the strong low-high frequency interactions.Comment: 42 pages, no figure

    Evaluation of black carbon estimations in global aerosol models

    Get PDF
    We evaluate black carbon (BC) model predictions from the AeroCom model intercomparison project by considering the diversity among year 2000 model simulations and comparing model predictions with available measurements. These model-measurement intercomparisons include BC surface and aircraft concentrations, aerosol absorption optical depth (AAOD) from AERONET and Ozone Monitoring Instrument (OMI) retrievals and BC column estimations based on AERONET. In regions other than Asia, most models are biased high compared to surface concentration measurements. However compared with (column) AAOD or BC burden retrievals, the models are generally biased low. The average ratio of model to retrieved AAOD is less than 0.7 in South American and 0.6 in African biomass burning regions; both of these regions lack surface concentration measurements. In Asia the average model to observed ratio is 0.6 for AAOD and 0.5 for BC surface concentrations. Compared with aircraft measurements over the Americas at latitudes between 0 and 50 N, the average model is a factor of 10 larger than observed, and most models exceed the measured BC standard deviation in the mid to upper troposphere. At higher latitudes the average model to aircraft BC is 0.6 and underestimates the observed BC loading in the lower and middle troposphere associated with springtime Arctic haze. Low model bias for AAOD but overestimation of surface and upper atmospheric BC concentrations at lower latitudes suggests that most models are underestimating BC absorption and should improve estimates of refractive index, particle size, and optical effects of BC coating. Retrieval uncertainties and/or differences with model diagnostic treatment may also contribute to the model-measurement disparity. Largest AeroCom model diversity occurred in northern Eurasia and the remote Arctic, regions influenced by anthropogenic sources. Changing emissions, aging, removal, or optical properties within a single model generated a smaller change in model predictions than the range represented by the full set of AeroCom models. Upper tropospheric concentrations of BC mass from the aircraft measurements are suggested to provide a unique new benchmark to test scavenging and vertical dispersion of BC in global models

    Properties of baryonic, electric and strangeness chemical potentials and some of their consequences in relativistic heavy ion collisions

    Full text link
    Analytic expressions are given for the baryonic, electric and strangeness chemical potentials which explicitly show the importance of various terms. Simple scaling relations connecting these chemical potentials are found. Applications to particle ratios and to fluctuations and related thermal properties such as the isothermal compressibility kappaT are illustrated. A possible divergence of kappaT is discussed

    Mechanisms of high-frequency song generation in brachypterous crickets and the role of ghost frequencies

    Get PDF
    Sound production in crickets relies on stridulation, the well-understood rubbing together of a pair of specialised wings. As the file of one wing slides over the scraper of the other, a series of rhythmic impacts cause harmonic oscillations, usually resulting in the radiation of pure tones delivered at low frequencies (2-8 kHz). In the short winged crickets of the Lebinthini tribe, acoustic communication relies on signals with remarkably high frequencies (> 8 kHz) and rich harmonic content. Using several species of the subfamily Eneopterinae, we characterise the morphological and mechanical specialisations supporting the production of high frequencies, and demonstrate that higher harmonics are exploited as dominant frequencies. These specialisations affect the structure of the stridulatory file, the motor control of stridulation and the resonance of the sound radiator. We place these specialisations in a phylogenetic framework and show that they serve to exploit high frequency vibrational modes pre-existing in the phylogenetic ancestor. In Eneopterinae, the lower frequency components are harmonically related to the dominant peak, suggesting they are relicts of ancestral carrier frequencies. Yet, such ghost frequencies still occur in the wings' free resonances, highlighting the fundamental mechanical constraints of sound radiation. These results support the hypothesis that such high frequency songs evolved stepwise, by a form of punctuated evolution which could be related to functional constraints, rather than by the progressive increase of the ancestral fundamental frequency

    Thermal Hadron Production in High Energy Heavy Ion Collisions

    Full text link
    We provide a method to test if hadrons produced in high energy heavy ion collisions were emitted at freeze-out from an equilibrium hadron gas. Our considerations are based on an ideal gas at fixed temperature TfT_f, baryon number density nBn_B, and vanishing total strangeness. The constituents of this gas are all hadron resonances up to a mass of 2 GeV; they are taken to decay according to the experimentally observed branching ratios. The ratios of the various resulting hadron production rates are tabulated as functions of TfT_f and nBn_B. These tables can be used for the equilibration analysis of any heavy ion data; we illustrate this for some specific cases.Comment: 12 pages (not included :13 figures + tables) report CERN-TH 6523/92 and Bielefeld preprint BI-TP 92/0

    Correlated quantum percolation in the lowest Landau level

    Full text link
    Our understanding of localization in the integer quantum Hall effect is informed by a combination of semi-classical models and percolation theory. Motivated by the effect of correlations on classical percolation we study numerically electron localization in the lowest Landau level in the presence of a power-law correlated disorder potential. Careful comparisons between classical and quantum dynamics suggest that the extended Harris criterion is applicable in the quantum case. This leads to a prediction of new localization quantum critical points in integer quantum Hall systems with power-law correlated disorder potentials. We demonstrate the stability of these critical points to addition of competing short-range disorder potentials, and discuss possible experimental realizations.Comment: 15 pages, 12 figure

    The Galactic Bulge exploration I.: The period-absolute\,magnitude-metallicity relations for RR~Lyrae stars for GBPG_{\rm BP}, VV, GG, GRPG_{\rm RP}, II, JJ, HH, and KsK_{\rm s} passbands using GaiaGaia DR3 parallaxes

    Full text link
    We present a new set of period-absolute magnitude-metallicity (PMZ) relations for single-mode RR Lyrae stars calibrated for the optical GBPG_{\rm BP}, VV, GG, GRPG_{\rm RP}, near-infrared II, JJ, HH, and KsK_{\rm s} passbands. We compiled a large dataset (over 100100 objects) of fundamental and first-overtone RR~Lyrae pulsators consisting of mean intensity magnitudes, reddenings, pulsations properties, iron abundances, and parallaxes measured by the \textit{Gaia} astrometric satellite in its third data release. Our newly calibrated PMZ relations encapsulate the most up-to-date ingredients in terms of both data and methodology. They are aimed to be used in conjunction with large photometric surveys targeting the Galactic bulge, including the Optical Gravitational Lensing Experiment (OGLE), the Vista Variables in the V\'ia L\'actea Survey (VVV), and the \textit{Gaia} catalog. In addition, our Bayesian probabilistic approach provides accurate uncertainty estimates of the predicted absolute magnitudes of individual RR Lyrae stars. Our derived PMZ relations provide consistent results when compared to benchmark distances to Globular clusters NGC\,6121 (also known as M4), NGC\,5139 (also known as omega Cen), and Large and Small Magellanic Clouds, which are stellar systems rich in RR~Lyrae stars. Lastly, our KsK_{\rm s}-band PMZ relations match well with the previously published PMZ relations based on Gaia data and accurately predict the distance toward the prototype of this class of variables, the eponymic RR~Lyr itself.Comment: Accepted for publication in A&
    • …
    corecore