762 research outputs found

    Chemotherapy-Response Monitoring of Breast Cancer Patients Using Quantitative Ultrasound-Based Intra-Tumour Heterogeneities

    Get PDF
    © 2017 The Author(s). Anti-cancer therapies including chemotherapy aim to induce tumour cell death. Cell death introduces alterations in cell morphology and tissue micro-structures that cause measurable changes in tissue echogenicity. This study investigated the effectiveness of quantitative ultrasound (QUS) parametric imaging to characterize intra-tumour heterogeneity and monitor the pathological response of breast cancer to chemotherapy in a large cohort of patients (n = 100). Results demonstrated that QUS imaging can non-invasively monitor pathological response and outcome of breast cancer patients to chemotherapy early following treatment initiation. Specifically, QUS biomarkers quantifying spatial heterogeneities in size, concentration and spacing of acoustic scatterers could predict treatment responses of patients with cross-validated accuracies of 82 ± 0.7%, 86 ± 0.7% and 85 ± 0.9% and areas under the receiver operating characteristic (ROC) curve of 0.75 ± 0.1, 0.80 ± 0.1 and 0.89 ± 0.1 at 1, 4 and 8 weeks after the start of treatment, respectively. The patients classified as responders and non-responders using QUS biomarkers demonstrated significantly different survivals, in good agreement with clinical and pathological endpoints. The results form a basis for using early predictive information on survival-linked patient response to facilitate adapting standard anti-cancer treatments on an individual patient basis

    Different Modes of Retrovirus Restriction by Human APOBEC3A and APOBEC3G In Vivo

    Get PDF
    The apolipoprotein B editing complex 3 (A3) cytidine deaminases are among the most highly evolutionarily selected retroviral restriction factors, both in terms of gene copy number and sequence diversity. Primate genomes encode seven A3 genes, and while A3F and 3G are widely recognized as important in the restriction of HIV, the role of the other genes, particularly A3A, is not as clear. Indeed, since human cells can express multiple A3 genes, and because of the lack of an experimentally tractable model, it is difficult to dissect the individual contribution of each gene to virus restriction in vivo. To overcome this problem, we generated human A3A and A3G transgenic mice on a mouse A3 knockout background. Using these mice, we demonstrate that both A3A and A3G restrict infection by murine retroviruses but by different mechanisms: A3G was packaged into virions and caused extensive deamination of the retrovirus genomes while A3A was not packaged and instead restricted infection when expressed in target cells. Additionally, we show that a murine leukemia virus engineered to express HIV Vif overcame the A3G-mediated restriction, thereby creating a novel model for studying the interaction between these proteins. We have thus developed an in vivo system for understanding how human A3 proteins use different modes of restriction, as well as a means for testing therapies that disrupt HIV Vif-A3G interactions.United States. Public Health Service (Grant R01-AI-085015)United States. Public Health Service (Grant T32-CA115299 )United States. Public Health Service (Grant F32-AI100512

    Harnessing learning biases is essential for applying social learning in conservation

    Get PDF
    Social learning can influence how animals respond to anthropogenic changes in the environment, determining whether animals survive novel threats and exploit novel resources or produce maladaptive behaviour and contribute to human-wildlife conflict. Predicting where social learning will occur and manipulating its use are, therefore, important in conservation, but doing so is not straightforward. Learning is an inherently biased process that has been shaped by natural selection to prioritize important information and facilitate its efficient uptake. In this regard, social learning is no different from other learning processes because it too is shaped by perceptual filters, attentional biases and learning constraints that can differ between habitats, species, individuals and contexts. The biases that constrain social learning are not understood well enough to accurately predict whether or not social learning will occur in many situations, which limits the effective use of social learning in conservation practice. Nevertheless, we argue that by tapping into the biases that guide the social transmission of information, the conservation applications of social learning could be improved. We explore the conservation areas where social learning is highly relevant and link them to biases in the cues and contexts that shape social information use. The resulting synthesis highlights many promising areas for collaboration between the fields and stresses the importance of systematic reviews of the evidence surrounding social learning practices.BBSRC David Phillips Fellowship (BB/H021817/1

    Universal Behaviors as Candidate Traditions in Wild Spider Monkeys

    Get PDF
    Candidate traditions were documented across three communities of wild spider monkeys (Ateles geoffroyi) using an a priori approach to identify behavioral variants and a statistical approach to examine differences in their proportional use. This methodology differs from previous studies of animal traditions, which used retrospective data and relied on the ‘exclusion method’ to identify candidate traditions. Our a priori approach increased the likelihood that behavior variants with equivalent functions were considered and our statistical approach enabled the proportional use of ‘universal’ behaviors, i.e., used across all communities, to be examined for the first time in any animal species as candidate traditions. Among universal behaviors we found 14 ‘community preferred’ variants. After considering the extent to which community preferred variants were due to ecological and, to a lesser degree, genetic differences, we concluded that at least six were likely maintained through social learning. Our findings have two main implications: (i) tradition repertoires could be larger than assumed from previous studies using the exclusion method; (ii) the relative use of universal behavior variants can reinforce community membership

    Altered cardiac autonomic nervous function in depression

    Get PDF
    Background:Depression is an independent risk factor for coronary artery disease. Autonomic instability may play a mediating or moderating role in this relationship; however this is not well understood. The objective of this study was to explore cardiac autonomic function and cardiac arrhythmia in depression, the correlation between depression severity and Heart Rate Variability (HRV) related indices, and the prevalence of arrhythmia.Methods:Individuals (n = 53) with major depression as assessed by the Diagnostic and Statistical Manual of Mental Disorders, who had a Hamilton Rating Scale for Depression (HAMD) score ≥20 and a Zung Self-Rating Depression Scale score > 53 were compared to 53 healthy individuals, matched for age and gender. Multichannel Electrocardiograph ECG-92C data were collected over 24 hours. Long-term changes in HRV were used to assess the following vagally mediated changes in autonomic tone, expressed as time domain indices: Standard deviation of the NN intervals (SDNN), standard deviation of 5 min averaged NN intervals (SDANN), Root Mean Square of the Successive Differences (RMSSD) and percentage of NN intervals > 50 ms different from preceding interval (pNN50). Pearson’s correlations were conducted to explore the strength of the association between depression severity (using the SDS and HRV related indices, specifically SDNN and low frequency domain / high frequency domain (LF/HF)).Results:The values of SDNN, SDANN, RMSSD, PNN50 and HF were lower in the depression group compared to the control group (P<.05). The mean value of the LF in the depression group was higher than the in control group (P<.05). Furthermore the ratio of LF/HF was higher among the depression group than the control group (P<.05). A linear relationship was shown to exist between the severity of the depression and HRV indices. In the depression group, the prevalence of arrhythmia was significantly higher than in the control group (P<.05), particularly supraventricular arrhythmias.Conclusions:Our findings suggest that depression is accompanied by dysfunction of the cardiac autonomic nervous system, and further, that depression severity is linked to severity of this dysfunction. Individuals with depression appear to be susceptible to premature atrial and/or ventricular disease

    Role of chymase in cigarette smoke-induced pulmonary artery remodeling and pulmonary hypertension in hamsters

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cigarette smoking is an important risk factor for pulmonary arterial hypertension (PAH) in chronic obstructive pulmonary disease (COPD). Chymase has been shown to function in the enzymatic production of angiotensin II (AngII) and the activation of transforming growth factor (TGF)-β1 in the cardiovascular system. The aim of this study was to determine the potential role of chymase in cigarette smoke-induced pulmonary artery remodeling and PAH.</p> <p>Methods</p> <p>Hamsters were exposed to cigarette smoke; after 4 months, lung morphology and tissue biochemical changes were examined using immunohistochemistry, Western blotting, radioimmunoassay and reverse-transcription polymerase chain reaction.</p> <p>Results</p> <p>Our results show that chronic cigarette smoke exposure significantly induced elevation of right ventricular systolic pressures (RVSP) and medial hypertrophy of pulmonary arterioles in hamsters, concurrent with an increase of chymase activity and synthesis in the lung. Elevated Ang II levels and enhanced TGF-β1/Smad signaling activation were also observed in smoke-exposed lungs. Chymase inhibition with chymostatin reduced the cigarette smoke-induced increase in chymase activity and Ang II concentration in the lung, and attenuated the RVSP elevation and the remodeling of pulmonary arterioles. Chymostatin did not affect angiotensin converting enzyme (ACE) activity in hamster lungs.</p> <p>Conclusions</p> <p>These results suggest that chronic cigarette smoke exposure can increase chymase activity and expression in hamster lungs. The capability of activated chymase to induce Ang II formation and TGF-β1 signaling may be part of the mechanism for smoking-induced pulmonary vascular remodeling. Thus, our study implies that blockade of chymase might provide benefits to PAH smokers.</p

    Competition–colonization trade-offs in a ciliate model community

    Get PDF
    There is considerable theoretical evidence that a trade-off between competitive and colonization ability enables species coexistence. However, empirical studies testing for the presence of a competition–colonization (CC) trade-off and its importance for species coexistence have found mixed results. In a microcosm experiment, we looked for a CC trade-off in a community of six benthic ciliate species. For each species, we measured the time needed to actively disperse to and colonize an empty microcosm. By measuring dispersal rates and growth rates of the species, we were able to differentiate between these two important components of colonization ability. Competitive ability was investigated by comparing species’ growth with or without a competitor in all pairwise species combinations. Species significantly differed in their colonization abilities, with good colonizers having either high growth rates or high dispersal rates or both. Although species showed a clear competitive hierarchy, competitive and colonization ability were uncorrelated. The weakest competitors were also the weakest colonizers, and the strongest competitor was an intermediate colonizer. However, some of the inferior competitors had higher colonization abilities than the strongest competitor, indicating that a CC trade-off may enable coexistence for a subset of the species. Absence of a community-wide CC trade-off may be based on the lack of strong relationships between the traits underlying competitive and colonization ability. We show that temporal effects and differential resource use are alternative mechanisms of coexistence for the species that were both slow colonizers and poor competitors

    APOBEC3A Is a Specific Inhibitor of the Early Phases of HIV-1 Infection in Myeloid Cells

    Get PDF
    Myeloid cells play numerous roles in HIV-1 pathogenesis serving as a vehicle for viral spread and as a viral reservoir. Yet, cells of this lineage generally resist HIV-1 infection when compared to cells of other lineages, a phenomenon particularly acute during the early phases of infection. Here, we explore the role of APOBEC3A on these steps. APOBEC3A is a member of the APOBEC3 family that is highly expressed in myeloid cells, but so far lacks a known antiviral effect against retroviruses. Using ectopic expression of APOBEC3A in established cell lines and specific silencing in primary macrophages and dendritic cells, we demonstrate that the pool of APOBEC3A in target cells inhibits the early phases of HIV-1 infection and the spread of replication-competent R5-tropic HIV-1, specifically in cells of myeloid origins. In these cells, APOBEC3A affects the amount of vDNA synthesized over the course of infection. The susceptibility to the antiviral effect of APOBEC3A is conserved among primate lentiviruses, although the viral protein Vpx coded by members of the SIVSM/HIV-2 lineage provides partial protection from APOBEC3A during infection. Our results indicate that APOBEC3A is a previously unrecognized antiviral factor that targets primate lentiviruses specifically in myeloid cells and that acts during the early phases of infection directly in target cells. The findings presented here open up new venues on the role of APOBEC3A during HIV infection and pathogenesis, on the role of the cellular context in the regulation of the antiviral activities of members of the APOBEC3 family and more generally on the natural functions of APOBEC3A
    corecore