3,820 research outputs found

    Activated but functionally impaired memory Tregs are expanded in slow progressors to type 1 diabetes

    Get PDF
    This is the final version. Available on open access from Springer via the DOI in this recordData availability: The datasets generated and/or analysed during the current study are available from the corresponding author on reasonable request.Aims/hypothesis Slow progressors to type 1 diabetes are individuals positive for multiple pancreatic islet autoantibodies who have remained diabetes-free for at least 10 years; regulation of the autoimmune response is understudied in this group. Here, we profile CD4+ regulatory T cells (Tregs) in a small but well-characterised cohort of extreme slow progressors with a median age 43 (range 31–72 years), followed up for 18–32 years. Methods Peripheral blood samples were obtained from slow progressors (n = 8), age- and sex-matched to healthy donors. One participant in this study was identified with a raised HbA1c at the time of assessment and subsequently diagnosed with diabetes; this donor was individually evaluated in the analysis of the data. Peripheral blood mononuclear cells (PBMCs) were isolated, and to assess frequency, phenotype and function of Tregs in donors, multi-parameter flow cytometry and T cell suppression assays were performed. Unsupervised clustering analysis, using FlowSOM and CITRUS (cluster identification, characterization, and regression), was used to evaluate Treg phenotypes. Results Unsupervised clustering on memory CD4+ T cells from slow progressors showed an increased frequency of activated memory CD4+ Tregs, associated with increased expression of glucocorticoid-induced TNFR-related protein (GITR), compared with matched healthy donors. One participant with a raised HbA1c at the time of assessment had a different Treg profile compared with both slow progressors and matched controls. Functional assays demonstrated that Treg-mediated suppression of CD4+ effector T cells from slow progressors was significantly impaired, compared with healthy donors. However, effector CD4+ T cells from slow progressors were more responsive to Treg suppression compared with healthy donors, demonstrated by increased suppression of CD25 and CD134 expression on effector CD4+ T cells. Conclusions/interpretations We conclude that activated memory CD4+ Tregs from slow progressors are expanded and enriched for GITR expression, highlighting the need for further study of Treg heterogeneity in individuals at risk of developing type 1 diabetes.Diabetes UKJDR

    Deep-sea benthic habitats and the impacts of trawling on them in the offshore Greenland halibut fishery, Davis Strait, west Greenland

    Get PDF
    The offshore Greenland halibut (Reinhardtius hippoglossoides) fishery, west Greenland, employs demersal trawl gear at depths of 800–1400 m. In contrast to many deep-sea fisheries, the target stock appears stable and the fishery is of significant economic importance. Recent Marine Stewardship Council certification of this fishery highlighted the paucity of knowledge of benthic habitats and trawling impacts, which this study aimed to address using a towed benthic video sled. The spatially discrete northern and southern areas of the fishery were found to be distinct in terms of the communities present, which non-metric multidimensional scaling suggests is primarily driven by temperature. Extensive physical evidence of trawling was observed. Trawling effort was significantly linked with community composition, with a negative association between trawling effort and abundance of some taxa, including some vulnerable marine ecosystem (VME) indicator species. Three potential VMEs are identified: (i) Flabellum alabastrum cup coral meadows; (ii) a Halipteris finmarchica sea pen field; and (iii) areas exhibiting mixed assemblages of VME indicators. Of immediate conservation concern is a H. finmarchica field, which seems to be at least regionally rare, is situated within the fringes of existing trawling effort and is currently afforded no protection by management measures

    DRAM-3 modulates autophagy and promotes cell survival in the absence of glucose

    Get PDF
    Macroautophagy is a membrane-trafficking process that delivers cytoplasmic constituents to lysosomes for degradation. The process operates under basal conditions as a mechanism to turnover damaged or misfolded proteins and organelles. As a result, it has a major role in preserving cellular integrity and viability. In addition to this basal function, macroautophagy can also be modulated in response to various forms of cellular stress, and the rate and cargoes of macroautophagy can be tailored to facilitate appropriate cellular responses in particular situations. The macroautophagy machinery is regulated by a group of evolutionarily conserved autophagy-related (ATG) proteins and by several other autophagy regulators, which either have tissue-restricted expression or operate in specific contexts. We report here the characterization of a novel autophagy regulator that we have termed DRAM-3 due to its significant homology to damage-regulated autophagy modulator (DRAM-1). DRAM-3 is expressed in a broad spectrum of normal tissues and tumor cells, but different from DRAM-1, DRAM-3 is not induced by p53 or DNA-damaging agents. Immunofluorescence studies revealed that DRAM-3 localizes to lysosomes/autolysosomes, endosomes and the plasma membrane, but not the endoplasmic reticulum, phagophores, autophagosomes or Golgi, indicating significant overlap with DRAM-1 localization and with organelles associated with macroautophagy. In this regard, we further proceed to show that DRAM-3 expression causes accumulation of autophagosomes under basal conditions and enhances autophagic flux. Reciprocally, CRISPR/Cas9-mediated disruption of DRAM-3 impairs autophagic flux confirming that DRAM-3 is a modulator of macroautophagy. As macroautophagy can be cytoprotective under starvation conditions, we also tested whether DRAM-3 could promote survival on nutrient deprivation. This revealed that DRAM-3 can repress cell death and promote long-term clonogenic survival of cells grown in the absence of glucose. Interestingly, however, this effect is macroautophagy-independent. In summary, these findings constitute the primary characterization of DRAM-3 as a modulator of both macroautophagy and cell survival under starvation conditions

    Stoicism, the physician, and care of medical outliers

    Get PDF
    BACKGROUND: Medical outliers present a medical, psychological, social, and economic challenge to the physicians who care for them. The determinism of Stoic thought is explored as an intellectual basis for the pursuit of a correct mental attitude that will provide aid and comfort to physicians who care for medical outliers, thus fostering continued physician engagement in their care. DISCUSSION: The Stoic topics of good, the preferable, the morally indifferent, living consistently, and appropriate actions are reviewed. Furthermore, Zeno's cardinal virtues of Justice, Temperance, Bravery, and Wisdom are addressed, as are the Stoic passions of fear, lust, mental pain, and mental pleasure. These concepts must be understood by physicians if they are to comprehend and accept the Stoic view as it relates to having the proper attitude when caring for those with long-term and/or costly illnesses. SUMMARY: Practicing physicians, especially those that are hospital based, and most assuredly those practicing critical care medicine, will be emotionally challenged by the medical outlier. A Stoic approach to such a social and psychological burden may be of benefit

    Calmodulin-like proteins localized to the conoid regulate motility and cell invasion by Toxoplasma gondii

    Get PDF
    Toxoplasma gondii contains an expanded number of calmodulin (CaM)-like proteins whose functions are poorly understood. Using a combination of CRISPR/Cas9-mediated gene editing and a plant-like auxin-induced degron (AID) system, we examined the roles of three apically localized CaMs. CaM1 and CaM2 were individually dispensable, but loss of both resulted in a synthetic lethal phenotype. CaM3 was refractory to deletion, suggesting it is essential. Consistent with this prediction auxin-induced degradation of CaM3 blocked growth. Phenotypic analysis revealed that all three CaMs contribute to parasite motility, invasion, and egress from host cells, and that they act downstream of microneme and rhoptry secretion. Super-resolution microscopy localized all three CaMs to the conoid where they overlap with myosin H (MyoH), a motor protein that is required for invasion. Biotinylation using BirA fusions with the CaMs labeled a number of apical proteins including MyoH and its light chain MLC7, suggesting they may interact. Consistent with this hypothesis, disruption of MyoH led to degradation of CaM3, or redistribution of CaM1 and CaM2. Collectively, our findings suggest these CaMs may interact with MyoH to control motility and cell invasion

    An enhanced static-list scheduling algorithm for temporal partitioning onto RPUs

    Get PDF
    This paper presents a novel algorithm for temporal partitioning of graphs representing a behavioral description. The algorithm is based on an extension of the traditional static-list scheduling that tailors it to resolve both scheduling and temporal partitioning. The nodes to be mapped into a partition are selected based on a statically computed cost model. The cost for each node integrates communication effects, the critical path length, and the possibility of the critical path to hide the delay of parallel nodes. In order to alleviate the runtime there is no dynamic update of the costs. A comparison of the algorithm to other schedulers and with close-to-optimum results obtained with a simulated annealing approach is shown. The presented algorithm has been implemented and the results show that it is robust, effective, and efficient, and when compared to other methods finds very good results in small amounts of CPU time

    Aspects of structural health and condition monitoring of offshore wind turbines

    Get PDF
    Wind power has expanded significantly over the past years, although reliability of wind turbine systems, especially of offshore wind turbines, has been many times unsatisfactory in the past. Wind turbine failures are equivalent to crucial financial losses. Therefore, creating and applying strategies that improve the reliability of their components is important for a successful implementation of such systems. Structural health monitoring (SHM) addresses these problems through the monitoring of parameters indicative of the state of the structure examined. Condition monitoring (CM), on the other hand, can be seen as a specialized area of the SHM community that aims at damage detection of, particularly, rotating machinery. The paper is divided into two parts: in the first part, advanced signal processing and machine learning methods are discussed for SHM and CM on wind turbine gearbox and blade damage detection examples. In the second part, an initial exploration of supervisor control and data acquisition systems data of an offshore wind farm is presented, and data-driven approaches are proposed for detecting abnormal behaviour of wind turbines. It is shown that the advanced signal processing methods discussed are effective and that it is important to adopt these SHM strategies in the wind energy sector

    Restricted Attentional Capacity within but Not between Sensory Modalities: An Individual Differences Approach

    Get PDF
    Background Most people show a remarkable deficit to report the second of two targets when presented in close temporal succession, reflecting an attentional blink (AB). An aspect of the AB that is often ignored is that there are large individual differences in the magnitude of the effect. Here we exploit these individual differences to address a long-standing question: does attention to a visual target come at a cost for attention to an auditory target (and vice versa)? More specifically, the goal of the current study was to investigate a) whether individuals with a large within-modality AB also show a large cross-modal AB, and b) whether individual differences in AB magnitude within different modalities correlate or are completely separate. Methodology/Principal Findings While minimizing differential task difficulty and chances for a task-switch to occur, a significant AB was observed when targets were both presented within the auditory or visual modality, and a positive correlation was found between individual within-modality AB magnitudes. However, neither a cross-modal AB nor a correlation between cross-modal and within-modality AB magnitudes was found. Conclusion/Significance The results provide strong evidence that a major source of attentional restriction must lie in modality-specific sensory systems rather than a central amodal system, effectively settling a long-standing debate. Individuals with a large within-modality AB may be especially committed or focused in their processing of the first target, and to some extent that tendency to focus could cross modalities, reflected in the within-modality correlation. However, what they are focusing (resource allocation, blocking of processing) is strictly within-modality as it only affects the second target on within-modality trials. The findings show that individual differences in AB magnitude can provide important information about the modular structure of human cognition
    • …
    corecore