160 research outputs found

    Validation of a digital photographic method for assessment of dietary quality of school lunch sandwiches brought from home.

    Get PDF
    Background: It is a challenge to assess children's dietary intake. The digital photographic method (DPM) may be an objective method that can overcome some of these challenges. Objective: The aim of this study was to evaluate the validity and reliability of a DPM to assess the quality of dietary intake from school lunch sandwiches brought from home among children aged 7–13 years. Design: School lunch sandwiches (n=191) were prepared to represent randomly selected school lunch sandwiches from a large database. All components were weighed to provide an objective measure of the composition. The lunches were photographed using a standardised DPM. From the digital images, the dietary components were estimated by a trained image analyst using weights or household measures and the dietary quality was assessed using a validated Meal Index of Dietary Quality (Meal IQ). The dietary components and the Meal IQ obtained from the digital images were validated against the objective weighed foods of the school lunch sandwiches. To determine interrater reliability, the digital images were evaluated by a second image analyst. Results: Correlation coefficients between the DPM and the weighed foods ranged from 0.89 to 0.97. The proportion of meals classified in the same or an adjacent quartile ranged from 98% (starch) to 100% (fruits, vegetables, fish, whole grain, and Meal IQ). There was no statistical difference between fish, fat, starch, whole grains, and Meal IQ using the two methods. Differences were found for fruits and vegetables; Bland–Altman analyses showed a tendency to underestimate high amounts of these variables using the DPM. For interrater reliability, kappa statistics ranged from 0.59 to 0.82 across the dietary components and Meal IQ. Conclusions: The standardised DPM is a valid and reliable method for assessing the dietary quality of school lunch sandwiches brought from home

    Accounting For Alignment Uncertainty in Phylogenomics

    Get PDF
    Uncertainty in multiple sequence alignments has a large impact on phylogenetic analyses. Little has been done to evaluate the quality of individual positions in protein sequence alignments, which directly impact the accuracy of phylogenetic trees. Here we describe ZORRO, a probabilistic masking program that accounts for alignment uncertainty by assigning confidence scores to each alignment position. Using the BALIBASE database and in simulation studies, we demonstrate that masking by ZORRO significantly reduces the alignment uncertainty and improves the tree accuracy

    Comparison of high versus low frequency cerebral physiology for cerebrovascular reactivity assessment in traumatic brain injury: a multi-center pilot study

    Get PDF
    Current accepted cerebrovascular reactivity indices suffer from the need of high frequency data capture and export for post-acquisition processing. The role for minute-by-minute data in cerebrovascular reactivity monitoring remains uncertain. The goal was to explore the statistical time-series relationships between intra-cranial pressure (ICP), mean arterial pressure (MAP) and pressure reactivity index (PRx) using both 10-s and minute data update frequency in TBI. Prospective data from 31 patients from 3 centers with moderate/severe TBI and high-frequency archived physiology were reviewed. Both 10-s by 10-s and minute-by-minute mean values were derived for ICP and MAP for each patient. Similarly, PRx was derived using 30 consecutive 10-s data points, updated every minute. While long-PRx (L-PRx) was derived via similar methodology using minute-by-minute data, with L-PRx derived using various window lengths (5, 10, 20, 30, 40, and 60 min; denoted L-PRx_5, etc.). Time-series autoregressive integrative moving average (ARIMA) and vector autoregressive integrative moving average (VARIMA) models were created to analyze the relationship of these parameters over time. ARIMA modelling, Granger causality testing and VARIMA impulse response function (IRF) plotting demonstrated that similar information is carried in minute mean ICP and MAP data, compared to 10-s mean slow-wave ICP and MAP data. Shorter window L-PRx variants, such as L-PRx_5, appear to have a similar ARIMA structure, have a linear association with PRx and display moderate-to-strong correlations (r ~ 0.700, p Peer reviewe

    Prospective research on musculoskeletal disorders in office workers (PROMO): study protocol

    Get PDF
    BACKGROUND: This article describes the background and study design of the PROMO study (Prospective Research on Musculoskeletal disorders in Office workers). Few longitudinal studies have been performed to investigate the risk factors responsible for the incidence of hand, arm, shoulder and neck symptoms among office workers, given the observation that a large group of office workers might be at risk worldwide. Therefore, the PROMO study was designed. The main aim is to quantify the contribution of exposure to occupational computer use to the incidence of hand, arm, shoulder and neck symptoms. The results of this study might lead to more effective and/or cost-efficient preventive interventions among office workers. METHODS/DESIGN: A prospective cohort study is conducted, with a follow-up of 24 months. In total, 1821 participants filled out the first questionnaire (response rate of 74%). Data on exposure and outcome is collected using web-based self-reports. Outcome assessment takes place every three months during the follow-up period. Data on computer use are collected at baseline and continuously during follow-up using a software program. DISCUSSION: The advantages of the PROMO study include the long follow-up period, the repeated measurement of both exposure and outcome, and the objective measurement of the duration of computer use. In the PROMO study, hypotheses stemming from lab-based and field-based research will be investigated

    Efficient representation of uncertainty in multiple sequence alignments using directed acyclic graphs

    Get PDF
    Background A standard procedure in many areas of bioinformatics is to use a single multiple sequence alignment (MSA) as the basis for various types of analysis. However, downstream results may be highly sensitive to the alignment used, and neglecting the uncertainty in the alignment can lead to significant bias in the resulting inference. In recent years, a number of approaches have been developed for probabilistic sampling of alignments, rather than simply generating a single optimum. However, this type of probabilistic information is currently not widely used in the context of downstream inference, since most existing algorithms are set up to make use of a single alignment. Results In this work we present a framework for representing a set of sampled alignments as a directed acyclic graph (DAG) whose nodes are alignment columns; each path through this DAG then represents a valid alignment. Since the probabilities of individual columns can be estimated from empirical frequencies, this approach enables sample-based estimation of posterior alignment probabilities. Moreover, due to conditional independencies between columns, the graph structure encodes a much larger set of alignments than the original set of sampled MSAs, such that the effective sample size is greatly increased. Conclusions The alignment DAG provides a natural way to represent a distribution in the space of MSAs, and allows for existing algorithms to be efficiently scaled up to operate on large sets of alignments. As an example, we show how this can be used to compute marginal probabilities for tree topologies, averaging over a very large number of MSAs. This framework can also be used to generate a statistically meaningful summary alignment; example applications show that this summary alignment is consistently more accurate than the majority of the alignment samples, leading to improvements in downstream tree inference. Implementations of the methods described in this article are available at http://statalign.github.io/WeaveAlign webcite

    The unfolded protein response in immunity and inflammation.

    Get PDF
    The unfolded protein response (UPR) is a highly conserved pathway that allows the cell to manage endoplasmic reticulum (ER) stress that is imposed by the secretory demands associated with environmental forces. In this role, the UPR has increasingly been shown to have crucial functions in immunity and inflammation. In this Review, we discuss the importance of the UPR in the development, differentiation, function and survival of immune cells in meeting the needs of an immune response. In addition, we review current insights into how the UPR is involved in complex chronic inflammatory diseases and, through its role in immune regulation, antitumour responses.This work was supported by the Netherlands Organization for Scientific Research Rubicon grant 825.13.012 (J.G.); US National Institutes of Health (NIH) grants DK044319, DK051362, DK053056 and DK088199, and the Harvard Digestive Diseases Center (HDDC) grant DK034854 (R.S.B.); National Institutes of Health grants DK042394, DK088227, DK103183 and CA128814 (R.J.K.); and European Research Council (ERC) Starting Grant 260961, ERC Consolidator Grant 648889, and the Wellcome Trust Investigator award 106260/Z/14/Z (A.K.).This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/nri.2016.6

    Gut mucosal DAMPs in IBD: From mechanisms to therapeutic implications

    Get PDF
    Endogenous damage-associated molecular patterns (DAMPs) are released during tissue damage and have increasingly recognized roles in the etiology of many human diseases. The inflammatory bowel diseases (IBD), ulcerative colitis (UC) and Crohn’s disease (CD), are immune-mediated conditions where high levels of DAMPs are observed. DAMPs such as calprotectin (S100A8/9) have an established clinical role as a biomarker in IBD. In this review, we use IBD as an archetypal common chronic inflammatory disease to focus on the conceptual and evidential importance of DAMPs in pathogenesis and why DAMPs represent an entirely new class of targets for clinical translation. </p

    Demanding business travel:the evolution of the timespaces of business practice

    Get PDF
    To date, virtual ways of working have yet to substantially reduce demand for business travel. Emerging research claims that virtual and physical work compliment rather than substitute for one another. This suggests travel demand stems from business strategies and achieving business outcomes. In building on these ideas, this chapter draws upon Schatzki’s conception of timespace to capture changes in how two UK-based global construction and engineering consulting firms organise work and the implications in terms of demand for business travel. Overtime, particular forms of spatially stretched organisation which have developed are found to require the interweaving of timespaces through travel. As such, how each firm has evolved has in turn created the contemporary situation of significant and hard to reduce demand for travel
    corecore