137 research outputs found

    Coronary artery to left ventricle fistula

    Get PDF
    BACKGROUND: Coronary cameral fistulas are an uncommon entity, the etiology of which may be congenital or traumatic. They involve abnormal termination of a coronary artery, usually the right coronary, into a cardiac chamber, usually the right ventricle. CASE PRESENTATION: We describe a case of female patient with severe aortic stenosis and interventricular septal hypertrophy that underwent bioprosthetic aortic valve replacement with concomitant septal myectomy. On subsequent follow-up an abnormal flow traversing the septum into the left ventricle was identified and Doppler interrogation demonstrated a continuous flow, with a predominantly diastolic component, consistent with coronary arterial flow. CONCLUSION: The literature on coronary cameral fistulas is reviewed and the etiology of the diagnostic findings discussed. In our patient, a coronary artery to left ventricle fistula was the most likely explanation secondary to trauma to the septal perforator artery during myectomy. Since the patient was asymptomatic at the time of diagnosis no intervention was recommended and has done well on follow-up

    Functional Characterization of Aquaporin-4 Specific T Cells: Towards a Model for Neuromyelitis Optica

    Get PDF
    Antibodies to the water channel protein aquaporin-4 (AQP4), which is expressed in astrocytic endfeet at the blood brain barrier, have been identified in the serum of Neuromyelitis optica (NMO) patients and are believed to induce damage to astrocytes. However, AQP4 specific T helper cell responses that are required for the generation of anti-AQP4 antibodies and most likely also for the formation of intraparenchymal CNS lesions have not been characterized. specific T cells were present in the natural T cell repertoire of wild type C57BL/6 mice and T cell lines were raised. However, active immunization with these AQP4 peptides did not induce signs of spinal cord disease. Rather, sensitization with AQP4 peptides resulted in production of IFN-γ, but also IL-5 and IL-10 by antigen-specific T cells. Consistent with this cytokine profile, the AQP4 specific antibody response upon immunization with full length AQP4 included IgG1 and IgG2, which are associated with a mixed Th2/Th1 T cell response. restricted AQP4 specific T cell epitopes will allow us to investigate how AQP4 specific autoimmune reactions are regulated and to establish faithful mouse models of NMO that include both cellular and humoral responses against AQP4

    Interaction and uptake of exosomes by ovarian cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Exosomes consist of membrane vesicles that are secreted by several cell types, including tumors and have been found in biological fluids. Exosomes interact with other cells and may serve as vehicles for the transfer of protein and RNA among cells.</p> <p>Methods</p> <p>SKOV3 exosomes were labelled with carboxyfluoresceine diacetate succinimidyl-ester and collected by ultracentrifugation. Uptake of these vesicles, under different conditions, by the same cells from where they originated was monitored by immunofluorescence microscopy and flow cytometry analysis. Lectin analysis was performed to investigate the glycosylation properties of proteins from exosomes and cellular extracts.</p> <p>Results</p> <p>In this work, the ovarian carcinoma SKOV3 cell line has been shown to internalize exosomes from the same cells via several endocytic pathways that were strongly inhibited at 4°C, indicating their energy dependence. Partial colocalization with the endosome marker EEA1 and inhibition by chlorpromazine suggested the involvement of clathrin-dependent endocytosis. Furthermore, uptake inhibition in the presence of 5-ethyl-N-isopropyl amiloride, cytochalasin D and methyl-beta-cyclodextrin suggested the involvement of additional endocytic pathways. The uptake required proteins from the exosomes and from the cells since it was inhibited after proteinase K treatments. The exosomes were found to be enriched in specific mannose- and sialic acid-containing glycoproteins. Sialic acid removal caused a small but non-significant increase in uptake. Furthermore, the monosaccharides D-galactose, α-L-fucose, α-D-mannose, D-N-acetylglucosamine and the disaccharide β-lactose reduced exosomes uptake to a comparable extent as the control D-glucose.</p> <p>Conclusions</p> <p>In conclusion, exosomes are internalized by ovarian tumor cells via various endocytic pathways and proteins from exosomes and cells are required for uptake. On the other hand, exosomes are enriched in specific glycoproteins that may constitute exosome markers. This work contributes to the knowledge about the properties and dynamics of exosomes in cancer.</p

    Quantitative EEG findings in patients with acute, brief depression combined with other fluctuating psychiatric symptoms: a controlled study from an acute psychiatric department

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Patients with brief depressive episodes and concurrent rapidly fluctuating psychiatric symptoms do not fit current diagnostic criteria and they can be difficult to diagnose and treat in an acute psychiatric setting. We wanted to study whether these patients had signs of more epileptic or organic brain dysfunction than patients with depression without additional symptomatology.</p> <p>Methods</p> <p>Sixteen acutely admitted patients diagnosed with a brief depressive episode as well as another concurrent psychiatric diagnosis were included. Sixteen patients with major depression served as controls. Three electroencephalographic studies (EEG) were visually interpreted and the background activity was also analysed with quantitative electroencephalography (QEEG).</p> <p>Results</p> <p>The group with brief depression and concurrent symptoms had multiple abnormal features in their standard EEG compared to patients with major depression, but they did not show significantly more epileptiform activity. They also had significantly higher temporal QEEG delta amplitude and interhemispheric temporal delta asymmetry.</p> <p>Conclusion</p> <p>Organic brain dysfunction may be involved in the pathogenesis of patients with brief depressive episodes mixed with rapidly fluctuating psychiatric symptoms. This subgroup of depressed patients should be investigated further in order to clarify the pathophysiology and to establish the optimal evaluation scheme and treatment in an acute psychiatric setting.</p

    HIV and Mature Dendritic Cells: Trojan Exosomes Riding the Trojan Horse?

    Get PDF
    Exosomes are secreted cellular vesicles that can induce specific CD4+ T cell responses in vivo when they interact with competent antigen-presenting cells like mature dendritic cells (mDCs). The Trojan exosome hypothesis proposes that retroviruses can take advantage of the cell-encoded intercellular vesicle traffic and exosome exchange pathway, moving between cells in the absence of fusion events in search of adequate target cells. Here, we discuss recent data supporting this hypothesis, which further explains how DCs can capture and internalize retroviruses like HIV-1 in the absence of fusion events, leading to the productive infection of interacting CD4+ T cells and contributing to viral spread through a mechanism known as trans-infection. We suggest that HIV-1 can exploit an exosome antigen-dissemination pathway intrinsic to mDCs, allowing viral internalization and final trans-infection of CD4+ T cells. In contrast to previous reports that focus on the ability of immature DCs to capture HIV in the mucosa, this review emphasizes the outstanding role that mature DCs could have promoting trans-infection in the lymph node, underscoring a new potential viral dissemination pathway

    Key mechanisms governing resolution of lung inflammation

    Get PDF
    Innate immunity normally provides excellent defence against invading microorganisms. Acute inflammation is a form of innate immune defence and represents one of the primary responses to injury, infection and irritation, largely mediated by granulocyte effector cells such as neutrophils and eosinophils. Failure to remove an inflammatory stimulus (often resulting in failed resolution of inflammation) can lead to chronic inflammation resulting in tissue injury caused by high numbers of infiltrating activated granulocytes. Successful resolution of inflammation is dependent upon the removal of these cells. Under normal physiological conditions, apoptosis (programmed cell death) precedes phagocytic recognition and clearance of these cells by, for example, macrophages, dendritic and epithelial cells (a process known as efferocytosis). Inflammation contributes to immune defence within the respiratory mucosa (responsible for gas exchange) because lung epithelia are continuously exposed to a multiplicity of airborne pathogens, allergens and foreign particles. Failure to resolve inflammation within the respiratory mucosa is a major contributor of numerous lung diseases. This review will summarise the major mechanisms regulating lung inflammation, including key cellular interplays such as apoptotic cell clearance by alveolar macrophages and macrophage/neutrophil/epithelial cell interactions. The different acute and chronic inflammatory disease states caused by dysregulated/impaired resolution of lung inflammation will be discussed. Furthermore, the resolution of lung inflammation during neutrophil/eosinophil-dominant lung injury or enhanced resolution driven via pharmacological manipulation will also be considered

    Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles

    Get PDF
    Release of membrane vesicles, a process conserved in both prokaryotes and eukaryotes, represents an evolutionary link, and suggests essential functions of a dynamic extracellular vesicular compartment (including exosomes, microparticles or microvesicles and apoptotic bodies). Compelling evidence supports the significance of this compartment in a broad range of physiological and pathological processes. However, classification of membrane vesicles, protocols of their isolation and detection, molecular details of vesicular release, clearance and biological functions are still under intense investigation. Here, we give a comprehensive overview of extracellular vesicles. After discussing the technical pitfalls and potential artifacts of the rapidly emerging field, we compare results from meta-analyses of published proteomic studies on membrane vesicles. We also summarize clinical implications of membrane vesicles. Lessons from this compartment challenge current paradigms concerning the mechanisms of intercellular communication and immune regulation. Furthermore, its clinical implementation may open new perspectives in translational medicine both in diagnostics and therapy

    Present state and future perspectives of using pluripotent stem cells in toxicology research

    Get PDF
    The use of novel drugs and chemicals requires reliable data on their potential toxic effects on humans. Current test systems are mainly based on animals or in vitro–cultured animal-derived cells and do not or not sufficiently mirror the situation in humans. Therefore, in vitro models based on human pluripotent stem cells (hPSCs) have become an attractive alternative. The article summarizes the characteristics of pluripotent stem cells, including embryonic carcinoma and embryonic germ cells, and discusses the potential of pluripotent stem cells for safety pharmacology and toxicology. Special attention is directed to the potential application of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) for the assessment of developmental toxicology as well as cardio- and hepatotoxicology. With respect to embryotoxicology, recent achievements of the embryonic stem cell test (EST) are described and current limitations as well as prospects of embryotoxicity studies using pluripotent stem cells are discussed. Furthermore, recent efforts to establish hPSC-based cell models for testing cardio- and hepatotoxicity are presented. In this context, methods for differentiation and selection of cardiac and hepatic cells from hPSCs are summarized, requirements and implications with respect to the use of these cells in safety pharmacology and toxicology are presented, and future challenges and perspectives of using hPSCs are discussed
    corecore