2,347 research outputs found
Transport genes and chemotaxis in Laribacter hongkongensis: a genome-wide analysis
<p>Abstract</p> <p>Background</p> <p><it>Laribacter hongkongensis </it>is a Gram-negative, sea gull-shaped rod associated with community-acquired gastroenteritis. The bacterium has been found in diverse freshwater environments including fish, frogs and drinking water reservoirs. Using the complete genome sequence data of <it>L. hongkongensis</it>, we performed a comprehensive analysis of putative transport-related genes and genes related to chemotaxis, motility and quorum sensing, which may help the bacterium adapt to the changing environments and combat harmful substances.</p> <p>Results</p> <p>A genome-wide analysis using Transport Classification Database TCDB, similarity and keyword searches revealed the presence of a large diversity of transporters (n = 457) and genes related to chemotaxis (n = 52) and flagellar biosynthesis (n = 40) in the <it>L. hongkongensis </it>genome. The transporters included those from all seven major transporter categories, which may allow the uptake of essential nutrients or ions, and extrusion of metabolic end products and hazardous substances. <it>L. hongkongensis </it>is unique among closely related members of <it>Neisseriaceae </it>family in possessing higher number of proteins related to transport of ammonium, urea and dicarboxylate, which may reflect the importance of nitrogen and dicarboxylate metabolism in this assacharolytic bacterium. Structural modeling of two C<sup><sub>4</sub></sup>-dicarboxylate transporters showed that they possessed similar structures to the determined structures of other DctP-TRAP transporters, with one having an unusual disulfide bond. Diverse mechanisms for iron transport, including hemin transporters for iron acquisition from host proteins, were also identified. In addition to the chemotaxis and flagella-related genes, the <it>L. hongkongensis </it>genome also contained two copies of <it>qseB/qseC </it>homologues of the AI-3 quorum sensing system.</p> <p>Conclusions</p> <p>The large number of diverse transporters and genes involved in chemotaxis, motility and quorum sensing suggested that the bacterium may utilize a complex system to adapt to different environments. Structural modeling will provide useful insights on the transporters in <it>L. hongkongensis</it>.</p
Impact of COVID-19 Pandemic on School-Aged Children’s Physical Activity, Screen Time, and Sleep in Hong Kong: A Cross-Sectional Repeated Measures Study
Despite concerns about the negative effects of social distancing and prolonged school closures on children’s lifestyle and physical activity (PA) during the COVID-19 pandemic, robust evidence is lacking on the impact of the pandemic-related school closures and social distancing on children’s wellbeing and daily life. This study aimed to examine changes in the PA levels, sleep patterns, and screen time of school-aged children during the different phases of the COVID-19 outbreak in Hong Kong using a repeated cross-sectional design. School students (grades 1 to 12) were asked to report their daily electronic device usage and to fill in a sleep diary, recording their daily sleep onset and wake-up time. They were equipped with a PA monitor, Actigraph wGT3X-BT, to obtain objective data on their PA levels and sleep patterns. Students were recruited before the pandemic (September 2019–January 2020; n = 577), during school closures (March 2020–April 2020; n = 146), and after schools partially reopened (October 2020–July 2021; n = 227). Our results indicated lower PA levels, longer sleep duration, and longer screen time among participants recruited during school closures than those recruited before the COVID-19 outbreak. Primary school students were found to sleep on average for an extra hour during school closures. The later sleep onset and increased screen time documented during school closures persisted when schools partially reopened. Our findings illustrate the significant impact of social distancing policies during the COVID-19 pandemic on the sleep pattern, screen time, and PA level in school-aged children in Hong Kong. Professionals should urgently reinforce the importance of improving physically activity, good sleep hygiene, and regulated use of electronic devices for parents and school-aged children during this unprecedented time
Microbial ligand costimulation drives neutrophilic steroid-refractory asthma
Funding: The authors thank the Wellcome Trust (102705) and the Universities of Aberdeen and Cape Town for funding. This research was also supported, in part, by National Institutes of Health GM53522 and GM083016 to DLW. KF and BNL are funded by the Fonds Wetenschappelijk Onderzoek, BNL is the recipient of an European Research Commission consolidator grant and participates in the European Union FP7 programs EUBIOPRED and MedALL. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD
Hyperthermia and Thermosensitive Liposomes for Improved Delivery of Chemotherapeutic Drugs to Solid Tumors
Lipid-based nanocarriers or liposomes have been proven successful in the delivery of chemotherapeutic agents and are currently applied clinically in the treatment of various types of cancer. Liposomes offer the advantage of a high drug payload, decreased drug toxicity and enhanced drug accumulation at tumor sites. Increased accumulation is due to the relatively leaky tumor vasculature that allows liposome extravasation. Between different types of tumors and even within one tumor, vascular permeability and thus liposome extravasation may differ greatly. Furthermore, upon accumulation of liposomes in the tumor area, drug bioavailability is not guaranteed. At present, these are the major issues for clinically used liposomal drugs
Giant cell tumor of the uterus: case report and response to chemotherapy
BACKGROUND: Giant cell tumor (GCT) is usually a benign but locally aggressive primary bone neoplasm in which monocytic macrophage/osteoclast precursor cells and multinucleated osteoclast-like giant cells infiltrate the tumor. The etiology of GCT is unknown, however the tumor cells of GCT have been reported to produce chemoattractants that can attract osteoclasts and osteoclast precursors. Rarely, GCT can originate at extraosseous sites. More rarely, GCT may exhibit a much more aggressive phenotype. The role of chemotherapy in metastatic GCT is not well defined. CASE PRESENTATION: We report a case of an aggressive GCT of the uterus with rapidly growing lung metastases, and its response to chemotherapy with pegylated-liposomal doxorubicin, ifosfamide, and bevacizumab, along with a review of the literature. CONCLUSION: Aggressive metastasizing GCT may arise in the uterus, and may respond to combination chemotherapy
Alpha-particle-induced complex chromosome exchanges transmitted through extra-thymic lymphopoiesis in vitro show evidence of emerging genomic instability
Human exposure to high-linear energy transfer α-particles includes environmental (e.g. radon gas and its decay progeny), medical (e.g. radiopharmaceuticals) and occupational (nuclear industry) sources. The associated health risks of α-particle exposure for lung cancer are well documented however the risk estimates for leukaemia remain uncertain. To further our understanding of α-particle effects in target cells for leukaemogenesis and also to seek general markers of individual exposure to α-particles, this study assessed the transmission of chromosomal damage initially-induced in human haemopoietic stem and progenitor cells after exposure to high-LET α-particles. Cells surviving exposure were differentiated into mature T-cells by extra-thymic T-cell differentiation in vitro. Multiplex fluorescence in situ hybridisation (M-FISH) analysis of naïve T-cell populations showed the occurrence of stable (clonal) complex chromosome aberrations consistent with those that are characteristically induced in spherical cells by the traversal of a single α-particle track. Additionally, complex chromosome exchanges were observed in the progeny of irradiated mature T-cell populations. In addition to this, newly arising de novo chromosome aberrations were detected in cells which possessed clonal markers of α-particle exposure and also in cells which did not show any evidence of previous exposure, suggesting ongoing genomic instability in these populations. Our findings support the usefulness and reliability of employing complex chromosome exchanges as indicators of past or ongoing exposure to high-LET radiation and demonstrate the potential applicability to evaluate health risks associated with α-particle exposure.This work was supported by the Department of Health, UK. Contract RRX95 (RMA NSDTG)
Spontaneous haemorrhage of an adrenal angiomyolipoma: case report
Background
Angiomyolipomas are rare mesenchymal tumours arising from the perivascular epithelioid cells consisting of variable amounts of adipose, thick-walled blood vessels and smooth muscle cells. These benign tumours commonly occur in the kidney with only a few case reports of adrenal angiomyolipomas which have the potential to reach a large size and haemorrhage.
Case presentation
A 45-year-old lady presented with a 3-week history of right loin pain, nausea and vomiting. A CT scan revealed a right adrenal angiomyolipoma measuring 6.3 × 6.8 cm with associated haemorrhage. The lesion was successfully treated with right open adrenalectomy, and histology confirmed the diagnosis of adrenal angiomyolipoma. The patient remained well with no evidence of recurrence at the 36-month follow-up.
Conclusion
Adrenal angiomyolipomas are rare benign tumours that have the ability to reach a large size and potential to bleed. Here, we report the second case of spontaneous haemorrhage in an adrenal angiomyolipoma, which was successfully treated with open adrenalectomy
Changes in the gastric enteric nervous system and muscle: A case report on two patients with diabetic gastroparesis
<p>Abstract</p> <p>Background</p> <p>The pathophysiological basis of diabetic gastroparesis is poorly understood, in large part due to the almost complete lack of data on neuropathological and molecular changes in the stomachs of patients. Experimental models indicate various lesions affecting the vagus, muscle, enteric neurons, interstitial cells of Cajal (ICC) or other cellular components. The aim of this study was to use modern analytical methods to determine morphological and molecular changes in the gastric wall in patients with diabetic gastroparesis.</p> <p>Methods</p> <p>Full thickness gastric biopsies were obtained laparoscopically from two gastroparetic patients undergoing surgical intervention and from disease-free areas of control subjects undergoing other forms of gastric surgery. Samples were processed for histological and immunohistochemical examination.</p> <p>Results</p> <p>Although both patients had severe refractory symptoms with malnutrition, requiring the placement of a gastric stimulator, one of them had no significant abnormalities as compared with controls. This patient had an abrupt onset of symptoms with a relatively short duration of diabetes that was well controlled. By contrast, the other patient had long standing brittle and poorly controlled diabetes with numerous episodes of diabetic ketoacidosis and frequent hypoglycemic episodes. Histological examination in this patient revealed increased fibrosis in the muscle layers as well as significantly fewer nerve fibers and myenteric neurons as assessed by PGP9.5 staining. Further, significant reduction was seen in staining for neuronal nitric oxide synthase, heme oxygenase-2, tyrosine hydroxylase as well as for c-KIT.</p> <p>Conclusion</p> <p>We conclude that poor metabolic control is associated with significant pathological changes in the gastric wall that affect all major components including muscle, neurons and ICC. Severe symptoms can occur in the absence of these changes, however and may reflect vagal, central or hormonal influences. Gastroparesis is therefore likely to be a heterogeneous disorder. Careful molecular and pathological analysis may allow more precise phenotypic differentiation and shed insight into the underlying mechanisms as well as identify novel therapeutic targets.</p
Ab initio alpha-alpha scattering
Processes involving alpha particles and alpha-like nuclei comprise a major
part of stellar nucleosynthesis and hypothesized mechanisms for thermonuclear
supernovae. In an effort towards understanding alpha processes from first
principles, we describe in this letter the first ab initio calculation of
alpha-alpha scattering. We use lattice effective field theory to describe the
low-energy interactions of nucleons and apply a technique called the adiabatic
projection method to reduce the eight-body system to an effective two-cluster
system. We find good agreement between lattice results and experimental phase
shifts for S-wave and D-wave scattering. The computational scaling with
particle number suggests that alpha processes involving heavier nuclei are also
within reach in the near future.Comment: 6 pages, 6 figure
- …