59 research outputs found

    Learning Temporal Transformations From Time-Lapse Videos

    Full text link
    Based on life-long observations of physical, chemical, and biologic phenomena in the natural world, humans can often easily picture in their minds what an object will look like in the future. But, what about computers? In this paper, we learn computational models of object transformations from time-lapse videos. In particular, we explore the use of generative models to create depictions of objects at future times. These models explore several different prediction tasks: generating a future state given a single depiction of an object, generating a future state given two depictions of an object at different times, and generating future states recursively in a recurrent framework. We provide both qualitative and quantitative evaluations of the generated results, and also conduct a human evaluation to compare variations of our models.Comment: ECCV201

    Predicting Future Instance Segmentation by Forecasting Convolutional Features

    Get PDF
    Anticipating future events is an important prerequisite towards intelligent behavior. Video forecasting has been studied as a proxy task towards this goal. Recent work has shown that to predict semantic segmentation of future frames, forecasting at the semantic level is more effective than forecasting RGB frames and then segmenting these. In this paper we consider the more challenging problem of future instance segmentation, which additionally segments out individual objects. To deal with a varying number of output labels per image, we develop a predictive model in the space of fixed-sized convolutional features of the Mask R-CNN instance segmentation model. We apply the "detection head'" of Mask R-CNN on the predicted features to produce the instance segmentation of future frames. Experiments show that this approach significantly improves over strong baselines based on optical flow and repurposed instance segmentation architectures

    Survey on Vision-based Path Prediction

    Full text link
    Path prediction is a fundamental task for estimating how pedestrians or vehicles are going to move in a scene. Because path prediction as a task of computer vision uses video as input, various information used for prediction, such as the environment surrounding the target and the internal state of the target, need to be estimated from the video in addition to predicting paths. Many prediction approaches that include understanding the environment and the internal state have been proposed. In this survey, we systematically summarize methods of path prediction that take video as input and and extract features from the video. Moreover, we introduce datasets used to evaluate path prediction methods quantitatively.Comment: DAPI 201

    CAR-Net: Clairvoyant Attentive Recurrent Network

    Full text link
    We present an interpretable framework for path prediction that leverages dependencies between agents' behaviors and their spatial navigation environment. We exploit two sources of information: the past motion trajectory of the agent of interest and a wide top-view image of the navigation scene. We propose a Clairvoyant Attentive Recurrent Network (CAR-Net) that learns where to look in a large image of the scene when solving the path prediction task. Our method can attend to any area, or combination of areas, within the raw image (e.g., road intersections) when predicting the trajectory of the agent. This allows us to visualize fine-grained semantic elements of navigation scenes that influence the prediction of trajectories. To study the impact of space on agents' trajectories, we build a new dataset made of top-view images of hundreds of scenes (Formula One racing tracks) where agents' behaviors are heavily influenced by known areas in the images (e.g., upcoming turns). CAR-Net successfully attends to these salient regions. Additionally, CAR-Net reaches state-of-the-art accuracy on the standard trajectory forecasting benchmark, Stanford Drone Dataset (SDD). Finally, we show CAR-Net's ability to generalize to unseen scenes.Comment: The 2nd and 3rd authors contributed equall

    Snippet based trajectory statistics histograms for assistive technologies

    Get PDF
    Due to increasing hospital costs and traveling time, more and more patients decide to use medical devices at home without traveling to the hospital. However, these devices are not always very straight-forward for usage, and the recent reports show that there are many injuries and even deaths caused by the wrong use of these devices. Since human supervision during every usage is impractical, there is a need for computer vision systems that would recognize actions and detect if the patient has done something wrong. In this paper, we propose to use Snippet Based Trajectory Statistics Histograms descriptor to recognize actions in two medical device usage problems; inhaler device usage and infusion pump usage. Snippet Based Trajectory Statistics Histograms encodes the motion and position statistics of densely extracted trajectories from a video. Our experiments show that by using Snippet Based Trajectory Statistics Histograms technique, we improve the overall performance for both tasks. Additionally, this method does not require heavy computation, and is suitable for real-time systems. © Springer International Publishing Switzerland 2015

    Globally Continuous and Non-Markovian Crowd Activity Analysis from Videos

    Get PDF
    Automatically recognizing activities in video is a classic problem in vision and helps to understand behaviors, describe scenes and detect anomalies. We propose an unsupervised method for such purposes. Given video data, we discover recurring activity patterns that appear, peak, wane and disappear over time. By using non-parametric Bayesian methods, we learn coupled spatial and temporal patterns with minimum prior knowledge. To model the temporal changes of patterns, previous works compute Markovian progressions or locally continuous motifs whereas we model time in a globally continuous and non-Markovian way. Visually, the patterns depict flows of major activities. Temporally, each pattern has its own unique appearance-disappearance cycles. To compute compact pattern representations, we also propose a hybrid sampling method. By combining these patterns with detailed environment information, we interpret the semantics of activities and report anomalies. Also, our method fits data better and detects anomalies that were difficult to detect previously

    Forecasting Human-Object Interaction: Joint Prediction of Motor Attention and Actions in First Person Video

    Full text link
    We address the challenging task of anticipating human-object interaction in first person videos. Most existing methods ignore how the camera wearer interacts with the objects, or simply consider body motion as a separate modality. In contrast, we observe that the international hand movement reveals critical information about the future activity. Motivated by this, we adopt intentional hand movement as a future representation and propose a novel deep network that jointly models and predicts the egocentric hand motion, interaction hotspots and future action. Specifically, we consider the future hand motion as the motor attention, and model this attention using latent variables in our deep model. The predicted motor attention is further used to characterise the discriminative spatial-temporal visual features for predicting actions and interaction hotspots. We present extensive experiments demonstrating the benefit of the proposed joint model. Importantly, our model produces new state-of-the-art results for action anticipation on both EGTEA Gaze+ and the EPIC-Kitchens datasets. Our project page is available at https://aptx4869lm.github.io/ForecastingHOI

    Knowledge transfer for scene-specific motion prediction

    Get PDF
    When given a single frame of the video, humans can not only interpret the content of the scene, but also they are able to forecast the near future. This ability is mostly driven by their rich prior knowledge about the visual world, both in terms of (i) the dynamics of moving agents, as well as (ii) the semantic of the scene. In this work we exploit the interplay between these two key elements to predict scene-specific motion patterns. First, we extract patch descriptors encoding the probability of moving to the adjacent patches, and the probability of being in that particular patch or changing behavior. Then, we introduce a Dynamic Bayesian Network which exploits this scene specific knowledge for trajectory prediction. Experimental results demonstrate that our method is able to accurately predict trajectories and transfer predictions to a novel scene characterized by similar elements

    The regulation of IL-10 expression

    Get PDF
    Interleukin (IL)-10 is an important immunoregulatory cytokine and an understanding of how IL-10 expression is controlled is critical in the design of immune intervention strategies. IL-10 is produced by almost all cell types within the innate (including macrophages, monocytes, dendritic cells (DCs), mast cells, neutrophils, eosinophils and natural killer cells) and adaptive (including CD4(+) T cells, CD8(+) T cells and B cells) immune systems. The mechanisms of IL-10 regulation operate at several stages including chromatin remodelling at the Il10 locus, transcriptional regulation of Il10 expression and post-transcriptional regulation of Il10 mRNA. In addition, whereas some aspects of Il10 gene regulation are conserved between different immune cell types, several are cell type- or stimulus-specific. Here, we outline the complexity of IL-10 production by discussing what is known about its regulation in macrophages, monocytes, DCs and CD4(+) T helper cells

    Therapeutic application of T regulatory cells in composite tissue allotransplantation

    Full text link
    • …
    corecore