32 research outputs found

    The Neural Representation of Prospective Choice during Spatial Planning and Decisions

    Get PDF
    We are remarkably adept at inferring the consequences of our actions, yet the neuronal mechanisms that allow us to plan a sequence of novel choices remain unclear. We used functional magnetic resonance imaging (fMRI) to investigate how the human brain plans the shortest path to a goal in novel mazes with one (shallow maze) or two (deep maze) choice points. We observed two distinct anterior prefrontal responses to demanding choices at the second choice point: one in rostrodorsal medial prefrontal cortex (rd-mPFC)/superior frontal gyrus (SFG) that was also sensitive to (deactivated by) demanding initial choices and another in lateral frontopolar cortex (lFPC), which was only engaged by demanding choices at the second choice point. Furthermore, we identified hippocampal responses during planning that correlated with subsequent choice accuracy and response time, particularly in mazes affording sequential choices. Psychophysiological interaction (PPI) analyses showed that coupling between the hippocampus and rd-mPFC increases during sequential (deep versus shallow) planning and is higher before correct versus incorrect choices. In short, using a naturalistic spatial planning paradigm, we reveal how the human brain represents sequential choices during planning without extensive training. Our data highlight a network centred on the cortical midline and hippocampus that allows us to make prospective choices while maintaining initial choices during planning in novel environments

    Differential influences of environment and self-motion on place and grid cell firing

    Get PDF
    Place and grid cells in the hippocampal formation provide foundational representations of environmental location, and potentially of locations within conceptual spaces. Some accounts predict that environmental sensory information and self-motion are encoded in complementary representations, while other models suggest that both features combine to produce a single coherent representation. Here, we use virtual reality to dissociate visual environmental from physical motion inputs, while recording place and grid cells in mice navigating virtual open arenas. Place cell firing patterns predominantly reflect visual inputs, while grid cell activity reflects a greater influence of physical motion. Thus, even when recorded simultaneously, place and grid cell firing patterns differentially reflect environmental information (or ‘states’) and physical self-motion (or ‘transitions’), and need not be mutually coherent

    A general model of hippocampal and dorsal striatal learning and decision making

    No full text
    Humans and other animals use multiple strategies for making decisions. Reinforcement-learning theory distinguishes between stimulus–response (model-free; MF) learning and deliberative (model-based; MB) planning. The spatial-navigation literature presents a parallel dichotomy between navigation strategies. In “response learning,” associated with the dorsolateral striatum (DLS), decisions are anchored to an egocentric reference frame. In “place learning,” associated with the hippocampus, decisions are anchored to an allocentric reference frame. Emerging evidence suggests that the contribution of hippocampus to place learning may also underlie its contribution to MB learning by representing relational structure in a cognitive map. Here, we introduce a computational model in which hippocampus subserves place and MB learning by learning a “successor representation” of relational structure between states; DLS implements model-free response learning by learning associations between actions and egocentric representations of landmarks; and action values from either system are weighted by the reliability of its predictions. We show that this model reproduces a range of seemingly disparate behavioral findings in spatial and nonspatial decision tasks and explains the effects of lesions to DLS and hippocampus on these tasks. Furthermore, modeling place cells as driven by boundaries explains the observation that, unlike navigation guided by landmarks, navigation guided by boundaries is robust to “blocking” by prior state–reward associations due to learned associations between place cells. Our model, originally shaped by detailed constraints in the spatial literature, successfully characterizes the hippocampal–striatal system as a general system for decision making via adaptive combination of stimulus–response learning and the use of a cognitive map

    Decomposing dynamical subprocesses for compositional generalization.

    No full text
    A striking feature of human cognition is an exceptional ability to rapidly adapt to novel situations. It is proposed this relies on abstracting and generalizing past experiences. While previous research has explored how humans detect and generalize single sequential processes, we have a limited understanding of how humans adapt to more naturalistic scenarios, for example, complex, multisubprocess environments. Here, we propose a candidate computational mechanism that posits compositional generalization of knowledge about subprocess dynamics. In two samples (N = 238 and N = 137), we combined a novel sequence learning task and computational modeling to ask whether humans extract and generalize subprocesses compositionally to solve new problems. In prior learning, participants experienced sequences of compound images formed from two graphs' product spaces (group 1: G1 and G2, group 2: G3 and G4). In transfer learning, both groups encountered compound images from the product of G1 and G3, composed entirely of new images. We show that subprocess knowledge transferred between task phases, such that in a new task environment each group had enhanced accuracy in predicting subprocess dynamics they had experienced during prior learning. Computational models utilizing predictive representations, based solely on the temporal contiguity of experienced task states, without an ability to transfer knowledge, failed to explain these data. Instead, behavior was consistent with a predictive representation model that maps task states between prior and transfer learning. These results help advance a mechanistic understanding of how humans discover and abstract subprocesses composing their experiences and compositionally reuse prior knowledge as a scaffolding for new experiences

    What is a cognitive map? Organizing knowledge for flexible behavior

    Get PDF
    It is proposed that a cognitive map encoding the relationships between entities in the world supports flexible behavior, but the majority of the neural evidence for such a system comes from studies of spatial navigation. Recent work describing neuronal parallels between spatial and non-spatial behaviors has rekindled the notion of a systematic organization of knowledge across multiple domains. We review experimental evidence and theoretical frameworks that point to principles unifying these apparently disparate functions. These principles describe how to learn and use abstract, generalizable knowledge and suggest that map-like representations observed in a spatial context may be an instance of general coding mechanisms capable of organizing knowledge of all kinds. We highlight how artificial agents endowed with such principles exhibit flexible behavior and learn map-like representations observed in the brain. Finally, we speculate on how these principles may offer insight into the extreme generalizations, abstractions, and inferences that characterize human cognition

    What is a cognitive map? Organizing knowledge for flexible behavior

    No full text
    It is proposed that a cognitive map encoding the relationships between entities in the world supports flexible behavior, but the majority of the neural evidence for such a system comes from studies of spatial navigation. Recent work describing neuronal parallels between spatial and non-spatial behaviors has rekindled the notion of a systematic organization of knowledge across multiple domains. We review experimental evidence and theoretical frameworks that point to principles unifying these apparently disparate functions. These principles describe how to learn and use abstract, generalizable knowledge and suggest that map-like representations observed in a spatial context may be an instance of general coding mechanisms capable of organizing knowledge of all kinds. We highlight how artificial agents endowed with such principles exhibit flexible behavior and learn map-like representations observed in the brain. Finally, we speculate on how these principles may offer insight into the extreme generalizations, abstractions, and inferences that characterize human cognition
    corecore