415 research outputs found

    Results of an open label feasibility study of sodium valproate in people with McArdle disease

    Get PDF
    McArdle disease results from a lack of muscle glycogen phosphorylase in skeletal muscle tissue. Regenerating skeletal muscle fibres can express the brain glycogen phosphorylase isoenzyme. Stimulating expression of this enzyme could be a therapeutic strategy. Animal model studies indicate that sodium valproate (VPA) can increase expression of phosphorylase in skeletal muscle affected with McArdle disease. This study was designed to assess whether VPA can modify expression of brain phosphorylase isoenzyme in people with McArdle disease. This phase II, open label, feasibility pilot study to assess efficacy of six months treatment with VPA (20 mg/kg/day) included 16 people with McArdle disease. Primary outcome assessed changes in VO2peak during an incremental cycle test. Secondary outcomes included: phosphorylase enzyme expression in post-treatment muscle biopsy, total distance walked in 12 min, plasma lactate change (forearm exercise test) and quality of life (SF36). Safety parameters. 14 participants completed the trial, VPA treatment was well tolerated; weight gain was the most frequently reported drug-related adverse event. There was no clinically meaningful change in any of the primary or secondary outcome measures including: VO2peak, 12 min walk test and muscle biopsy to look for a change in the number of phosphorylase positive fibres between baseline and 6 months of treatment. Although this was a small open label feasibility study, it suggests that a larger randomised controlled study of VPA, may not be worthwhile

    The RING-CH ligase K5 antagonizes restriction of KSHV and HIV-1 particle release by mediating ubiquitin-dependent endosomal degradation of tetherin

    Get PDF
    Tetherin (CD317/BST2) is an interferon-induced membrane protein that inhibits the release of diverse enveloped viral particles. Several mammalian viruses have evolved countermeasures that inactivate tetherin, with the prototype being the HIV-1 Vpu protein. Here we show that the human herpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV) is sensitive to tetherin restriction and its activity is counteracted by the KSHV encoded RING-CH E3 ubiquitin ligase K5. Tetherin expression in KSHV-infected cells inhibits viral particle release, as does depletion of K5 protein using RNA interference. K5 induces a species-specific downregulation of human tetherin from the cell surface followed by its endosomal degradation. We show that K5 targets a single lysine (K18) in the cytoplasmic tail of tetherin for ubiquitination, leading to relocalization of tetherin to CD63-positive endosomal compartments. Tetherin degradation is dependent on ESCRT-mediated endosomal sorting, but does not require a tyrosine-based sorting signal in the tetherin cytoplasmic tail. Importantly, we also show that the ability of K5 to substitute for Vpu in HIV-1 release is entirely dependent on K18 and the RING-CH domain of K5. By contrast, while Vpu induces ubiquitination of tetherin cytoplasmic tail lysine residues, mutation of these positions has no effect on its antagonism of tetherin function, and residual tetherin is associated with the trans-Golgi network (TGN) in Vpu-expressing cells. Taken together our results demonstrate that K5 is a mechanistically distinct viral countermeasure to tetherin-mediated restriction, and that herpesvirus particle release is sensitive to this mode of antiviral inhibition

    Ectopic Expression of Vaccinia Virus E3 and K3 Cannot Rescue Ectromelia Virus Replication in Rabbit RK13 Cells

    Get PDF
    Citation: Hand, E. S., Haller, S. L., Peng, C., Rothenburg, S., & Hersperger, A. R. (2015). Ectopic Expression of Vaccinia Virus E3 and K3 Cannot Rescue Ectromelia Virus Replication in Rabbit RK13 Cells. Plos One, 10(3), 15. doi:10.1371/journal.pone.0119189As a group, poxviruses have been shown to infect a wide variety of animal species. However, there is individual variability in the range of species able to be productively infected. In this study, we observed that ectromelia virus (ECTV) does not replicate efficiently in cultured rabbit RK13 cells. Conversely, vaccinia virus (VACV) replicates well in these cells. Upon infection of RK13 cells, the replication cycle of ECTV is abortive in nature, resulting in a greatly reduced ability to spread among cells in culture. We observed ample levels of early gene expression but reduced detection of virus factories and severely blunted production of enveloped virus at the cell surface. This work focused on two important host range genes, named E3L and K3L, in VACV. Both VACV and ECTV express a functional protein product from the E3L gene, but only VACV contains an intact K3L gene. To better understand the discrepancy in replication capacity of these viruses, we examined the ability of ECTV to replicate in wild-type RK13 cells compared to cells that constitutively express E3 and K3 from VACV. The role these proteins play in the ability of VACV to replicate in RK13 cells was also analyzed to determine their individual contribution to viral replication and PKR activation. Since E3L and K3L are two relevant host range genes, we hypothesized that expression of one or both of them may have a positive impact on the ability of ECTV to replicate in RK13 cells. Using various methods to assess virus growth, we did not detect any significant differences with respect to the replication of ECTV between wild-type RK13 compared to versions of this cell line that stably expressed VACV E3 alone or in combination with K3. Therefore, there remain unanswered questions related to the factors that limit the host range of ECTV

    Attenuated reovirus displays oncolysis with reduced host toxicity

    Get PDF
    Background: Although the naturally occurring reovirus causes only mild symptoms in humans, it shows considerable potential as an oncolytic agent because of its innate ability to target cancer cells. In immunocompromised hosts, however, wild-type reovirus can target healthy tissues, including heart, liver, pancreas and neural structures. Methods: We characterized an attenuated form of reovirus (AV) derived from a persistently infected cell line through sequence analysis, as well as western blot and in vitro transcription and translation techniques. To examine its pathogenesis and oncolytic potential, AV reovirus was tested on healthy embryonic stem cells, various non-transformed and transformed cell lines, and in severe combined immunodeficiency (SCID) mice with tumour xenografts. Results: Sequence analysis of AV reovirus revealed a premature STOP codon in its sigma 1 attachment protein. Western blot and in vitro translation confirmed the presence of a truncated ?1. In comparison to wild-type reovirus, AV reovirus did not kill healthy stem cells or induce black tail formation in SCID mice. However, it did retain its ability to target cancer cells and reduce tumour size. Conclusion: Despite containing a truncated attachment protein, AV reovirus still preferentially targets cancer cells, and compared with wild-type reovirus it shows reduced toxicity when administered to immunodeficient hosts, suggesting the potential use of AV reovirus in combination cancer therapy

    Long-term efficacy of a combination of amlodipine and olmesartan medoxomil±hydrochlorothiazide in patients with hypertension stratified by age, race and diabetes status: a substudy of the COACH trial

    Get PDF
    A prespecified subgroup analysis of a 44-week open-label extension study is presented. The efficacy and safety of the combination of amlodipine (AML)+ olmesartan medoxomil (OM), with and without the addition of hydrochlorothiazide (HCTZ), were investigated in patients aged ⩾65 and <65 years, Blacks and non-Blacks and patients with and without type 2 diabetes. After an 8-week double-blind, placebo-controlled portion of the study, patients initiated therapy on AML 5+OM 40 mg per day, were uptitrated stepwise to AML 10+OM 40 mg per day, with the addition of HCTZ 12.5 mg, and 25 mg if blood pressure (BP) goal was not achieved (<140/90 or <130/80 mm Hg for patients with diabetes). Endpoints included the change from baseline in mean seated systolic BP, mean seated diastolic BP and achievement of BP goal. BP decreased from baseline for all treatments in each prespecified subgroup. By the end of the study, BP goal was achieved in 61.0% of patients aged ⩾65 years, 68.1% of patients aged <65 years, 63.3% of Blacks, 67.8% of non-Blacks, 26.9% of patients with diabetes and 72.9% of patients without diabetes. The combination of AML+OM±HCTZ was efficacious, safe and well tolerated by these subgroups

    Surface pretreatments for medical application of adhesion

    Get PDF
    Medical implants and prostheses (artificial hips, tendono- and ligament plasties) usually are multi-component systems that may be machined from one of three material classes: metals, plastics and ceramics. Typically, the body-sided bonding element is bone. The purpose of this contribution is to describe developments carried out to optimize the techniques , connecting prosthesis to bone, to be joined by an adhesive bone cement at their interface. Although bonding of organic polymers to inorganic or organic surfaces and to bone has a long history, there remains a serious obstacle in realizing long-term high-bonding strengths in the in vivo body environment of ever present high humidity. Therefore, different pretreatments, individually adapted to the actual combination of materials, are needed to assure long term adhesive strength and stability against hydrolysis. This pretreatment for metal alloys may be silica layering; for PE-plastics, a specific plasma activation; and for bone, amphiphilic layering systems such that the hydrophilic properties of bone become better adapted to the hydrophobic properties of the bone cement. Amphiphilic layering systems are related to those developed in dentistry for dentine bonding. Specific pretreatment can significantly increase bond strengths, particularly after long term immersion in water under conditions similar to those in the human body. The bond strength between bone and plastic for example can be increased by a factor approaching 50 (pealing work increasing from 30 N/m to 1500 N/m). This review article summarizes the multi-disciplined subject of adhesion and adhesives, considering the technology involved in the formation and mechanical performance of adhesives joints inside the human body

    Genetic identification of cytomegaloviruses in a rural population of Côte d'Ivoire.

    Get PDF
    BACKGROUND: Cytomegaloviruses (CMVs) are herpesviruses that infect many mammalian species, including humans. Infection generally passes undetected, but the virus can cause serious disease in individuals with impaired immune function. Human CMV (HCMV) is circulating with high seroprevalence (60-100 %) on all continents. However, little information is available on HCMV genoprevalence and genetic diversity in subsaharan Africa, especially in rural areas of West Africa that are at high risk of human-to-human HCMV transmission. In addition, there is a potential for zoonotic spillover of pathogens through bushmeat hunting and handling in these areas as shown for various retroviruses. Although HCMV and nonhuman CMVs are regarded as species-specific, potential human infection with CMVs of non-human primate (NHP) origin, shown to circulate in the local NHP population, has not been studied. FINDINGS: Analysis of 657 human oral swabs and fecal samples collected from 518 individuals living in 8 villages of Côte d'Ivoire with generic PCR for identification of human and NHP CMVs revealed shedding of HCMV in 2.5 % of the individuals. Determination of glycoprotein B sequences showed identity with strains Towne, AD169 and Toledo, respectively. NHP CMV sequences were not detected. CONCLUSIONS: HCMV is actively circulating in a proportion of the rural Côte d'Ivoire human population with circulating strains being closely related to those previously identified in non-African countries. The lack of NHP CMVs in human populations in an environment conducive to cross-species infection supports zoonotic transmission of CMVs to humans being at most a rare event

    Fast track multi-discipline treatment (FTMDT trial) versus conventional treatment in colorectal cancer--the design of a prospective randomized controlled study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Laparoscopy-assisted surgery, fast-track perioperative treatment are both increasingly used in colorectal cancer treatment, for their short-time benefits of enhanced recovery and short hospital stays. However, the benefits of the integration of the Laparoscopy-assisted surgery, fast-track perioperative treatment, and even with the Xelox chemotherapy, are still unknown. In this study, the three treatments integration is defined as "Fast Track Multi-Discipline Treatment Model" for colorectal cancer and this model extends the benefits to the whole treatment process of colorectal cancer. The main purpose of the study is to explore the feasibility of "Fast Track Multi-Discipline Treatment" model in treatment of colorectal cancer.</p> <p>Methods</p> <p>The trial is a prospective randomized controlled study with 2 × 2 balanced factorial design. Patients eligible for the study will be randomized to 4 groups: (I) Laparoscopic surgery with fast track perioperative treatment and Xelox chemotherapy; (II) Open surgery with fast track perioperative treatment and Xelox chemotherapy; (III) Laparoscopic surgery with conventional perioperative treatment and mFolfox6 chemotherapy; (IV) Open surgery with conventional perioperative treatment and mFolfox6 chemotherapy. The primary endpoint of this study is the hospital stays. The secondary endpoints are the quality of life, chemotherapy related adverse events, surgical complications and hospitalization costs. Totally, 340 patients will be enrolled with 85 patients in each group.</p> <p>Conclusions</p> <p>The study initiates a new treatment model "Fast Track Multi-Discipline Treatment" for colorectal cancer, and will provide feasibility evidence on the new model "Fast Track Multi-Discipline Treatment" for patients with colorectal cancer.</p> <p>Trial registration</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT01080547">NCT01080547</a></p

    Rotavirus NSP1 Inhibits NFκB Activation by Inducing Proteasome-Dependent Degradation of β-TrCP: A Novel Mechanism of IFN Antagonism

    Get PDF
    Mechanisms by which viruses counter innate host defense responses generally involve inhibition of one or more components of the interferon (IFN) system. Multiple steps in the induction and amplification of IFN signaling are targeted for inhibition by viral proteins, and many of the IFN antagonists have direct or indirect effects on activation of latent cytoplasmic transcription factors. Rotavirus nonstructural protein NSP1 blocks transcription of type I IFNα/β by inducing proteasome-dependent degradation of IFN-regulatory factors 3 (IRF3), IRF5, and IRF7. In this study, we show that rotavirus NSP1 also inhibits activation of NFκB and does so by a novel mechanism. Proteasome-mediated degradation of inhibitor of κB (IκBα) is required for NFκB activation. Phosphorylated IκBα is a substrate for polyubiquitination by a multisubunit E3 ubiquitin ligase complex, Skp1/Cul1/F-box, in which the F-box substrate recognition protein is β-transducin repeat containing protein (β-TrCP). The data presented show that phosphorylated IκBα is stable in rotavirus-infected cells because infection induces proteasome-dependent degradation of β-TrCP. NSP1 expressed in isolation in transiently transfected cells is sufficient to induce this effect. Targeted degradation of an F-box protein of an E3 ligase complex with a prominent role in modulation of innate immune signaling and cell proliferation pathways is a unique mechanism of IFN antagonism and defines a second strategy of immune evasion used by rotaviruses
    corecore