1,186 research outputs found

    Low Mate Encounter Rate Increases Male Risk Taking in a Sexually Cannibalistic Praying Mantis

    Get PDF
    Male praying mantises are forced into the ultimate trade-off of mating versus complete loss of future reproduction if they fall prey to a female. The balance of this trade-off will depend both on (1) the level of predatory risk imposed by females and (2) the frequency of mating opportunities for males. We report the results of a set of experiments that examine the effects of these two variables on male risk-taking behavior and the frequency of sexual cannibalism in the praying mantis Tenodera sinensis. We experimentally altered the rate at which males encountered females and measured male approach and courtship behavior under conditions of high and low risk of being attacked by females. We show that male risk taking depends on prior access to females. Males with restricted access to females showed greater risk-taking behavior. When males were given daily female encounters, they responded to greater female-imposed risk by slowing their rate of approach and remained a greater distance from a potential mate. In contrast, males without recent access to mates were greater risk-takers; they approached females more rapidly and to closer proximity, regardless of risk. In a second experiment, we altered male encounter rate with females and measured rates of sexual cannibalism when paired with hungry or well-fed females. Greater risk-taking behavior by males with low mate encounter rates resulted in high rates of sexual cannibalism when these males were paired with hungry females

    Statistically derived contributions of diverse human influences to twentieth-century temperature changes

    Full text link
    The warming of the climate system is unequivocal as evidenced by an increase in global temperatures by 0.8 °C over the past century. However, the attribution of the observed warming to human activities remains less clear, particularly because of the apparent slow-down in warming since the late 1990s. Here we analyse radiative forcing and temperature time series with state-of-the-art statistical methods to address this question without climate model simulations. We show that long-term trends in total radiative forcing and temperatures have largely been determined by atmospheric greenhouse gas concentrations, and modulated by other radiative factors. We identify a pronounced increase in the growth rates of both temperatures and radiative forcing around 1960, which marks the onset of sustained global warming. Our analyses also reveal a contribution of human interventions to two periods when global warming slowed down. Our statistical analysis suggests that the reduction in the emissions of ozone-depleting substances under the Montreal Protocol, as well as a reduction in methane emissions, contributed to the lower rate of warming since the 1990s. Furthermore, we identify a contribution from the two world wars and the Great Depression to the documented cooling in the mid-twentieth century, through lower carbon dioxide emissions. We conclude that reductions in greenhouse gas emissions are effective in slowing the rate of warming in the short term.F.E. acknowledges financial support from the Consejo Nacional de Ciencia y Tecnologia (http://www.conacyt.gob.mx) under grant CONACYT-310026, as well as from PASPA DGAPA of the Universidad Nacional Autonoma de Mexico. (CONACYT-310026 - Consejo Nacional de Ciencia y Tecnologia; PASPA DGAPA of the Universidad Nacional Autonoma de Mexico

    Binary orbits as the driver of γ-ray emission and mass ejection in classical novae

    Get PDF
    Classical novae are the most common astrophysical thermonuclear explosions, occurring on the surfaces of white dwarf stars accreting gas from companions in binary star systems. Novae typically expel �10,000 solar masses of material at velocities exceeding 1,000 km/s. However, the mechanism of mass ejection in novae is poorly understood, and could be dominated by the impulsive flash of the thermonuclear runaway, prolonged optically thick winds, or binary interaction with the nova envelope. Classical novae are now routinely detected in GeV gamma-rays, suggesting that relativistic particles are accelerated by strong shocks in nova ejecta. Here we present high-resolution imaging of the gamma-ray-emitting nova V959 Mon at radio wavelengths, showing that its ejecta were shaped by binary motion: some gas was expelled rapidly along the poles as a wind from the white dwarf, while denser material drifted out along the equatorial plane, propelled by orbital motion. At the interface between the equatorial and polar regions, we observe synchrotron emission indicative of shocks and relativistic particle acceleration, thereby pinpointing the location of gamma-ray production. Binary shaping of the nova ejecta and associated internal shocks are expected to be widespread among novae, explaining why many novae are gamma-ray emitters

    3-D Ultrastructure of O. tauri: Electron Cryotomography of an Entire Eukaryotic Cell

    Get PDF
    The hallmark of eukaryotic cells is their segregation of key biological functions into discrete, membrane-bound organelles. Creating accurate models of their ultrastructural complexity has been difficult in part because of the limited resolution of light microscopy and the artifact-prone nature of conventional electron microscopy. Here we explored the potential of the emerging technology electron cryotomography to produce three-dimensional images of an entire eukaryotic cell in a near-native state. Ostreococcus tauri was chosen as the specimen because as a unicellular picoplankton with just one copy of each organelle, it is the smallest known eukaryote and was therefore likely to yield the highest resolution images. Whole cells were imaged at various stages of the cell cycle, yielding 3-D reconstructions of complete chloroplasts, mitochondria, endoplasmic reticula, Golgi bodies, peroxisomes, microtubules, and putative ribosome distributions in-situ. Surprisingly, the nucleus was seen to open long before mitosis, and while one microtubule (or two in some predivisional cells) was consistently present, no mitotic spindle was ever observed, prompting speculation that a single microtubule might be sufficient to segregate multiple chromosomes

    Instability of Plastid DNA in the Nuclear Genome

    Get PDF
    Functional gene transfer from the plastid (chloroplast) and mitochondrial genomes to the nucleus has been an important driving force in eukaryotic evolution. Non-functional DNA transfer is far more frequent, and the frequency of such transfers from the plastid to the nucleus has been determined experimentally in tobacco using transplastomic lines containing, in their plastid genome, a kanamycin resistance gene (neo) readymade for nuclear expression. Contrary to expectations, non-Mendelian segregation of the kanamycin resistance phenotype is seen in progeny of some lines in which neo has been transferred to the nuclear genome. Here, we provide a detailed analysis of the instability of kanamycin resistance in nine of these lines, and we show that it is due to deletion of neo. Four lines showed instability with variation between progeny derived from different areas of the same plant, suggesting a loss of neo during somatic cell division. One line showed a consistent reduction in the proportion of kanamycin-resistant progeny, suggesting a loss of neo during meiosis, and the remaining four lines were relatively stable. To avoid genomic enlargement, the high frequency of plastid DNA integration into the nuclear genome necessitates a counterbalancing removal process. This is the first demonstration of such loss involving a high proportion of recent nuclear integrants. We propose that insertion, deletion, and rearrangement of plastid sequences in the nuclear genome are important evolutionary processes in the generation of novel nuclear genes. This work is also relevant in the context of transgenic plant research and crop production, because similar processes to those described here may be involved in the loss of plant transgenes

    Cryptosporidium Priming Is More Effective than Vaccine for Protection against Cryptosporidiosis in a Murine Protein Malnutrition Model

    Get PDF
    Cryptosporidium is a major cause of severe diarrhea, especially in malnourished children. Using a murine model of C. parvum oocyst challenge that recapitulates clinical features of severe cryptosporidiosis during malnutrition, we interrogated the effect of protein malnutrition (PM) on primary and secondary responses to C. parvum challenge, and tested the differential ability of mucosal priming strategies to overcome the PM-induced susceptibility. We determined that while PM fundamentally alters systemic and mucosal primary immune responses to Cryptosporidium, priming with C. parvum (106 oocysts) provides robust protective immunity against re-challenge despite ongoing PM. C. parvum priming restores mucosal Th1-type effectors (CD3+CD8+CD103+ T-cells) and cytokines (IFNγ, and IL12p40) that otherwise decrease with ongoing PM. Vaccination strategies with Cryptosporidium antigens expressed in the S. Typhi vector 908htr, however, do not enhance Th1-type responses to C. parvum challenge during PM, even though vaccination strongly boosts immunity in challenged fully nourished hosts. Remote non-specific exposures to the attenuated S. Typhi vector alone or the TLR9 agonist CpG ODN-1668 can partially attenuate C. parvum severity during PM, but neither as effectively as viable C. parvum priming. We conclude that although PM interferes with basal and vaccine-boosted immune responses to C. parvum, sustained reductions in disease severity are possible through mucosal activators of host defenses, and specifically C. parvum priming can elicit impressively robust Th1-type protective immunity despite ongoing protein malnutrition. These findings add insight into potential correlates of Cryptosporidium immunity and future vaccine strategies in malnourished children

    Persistent anthrax as a major driver of wildlife mortality in a tropical rainforest

    Get PDF
    Anthrax is a globally important animal disease and zoonosis. Despite this, our current knowledge of anthrax ecology is largely limited to arid ecosystems, where outbreaks are most commonly reported. Here we show that the dynamics of an anthrax-causing agent, Bacillus cereus biovar anthracis, in a tropical rainforest have severe consequences for local wildlife communities. Using data and samples collected over three decades, we show that rainforest anthrax is a persistent and widespread cause of death for a broad range of mammalian hosts. We predict that this pathogen will accelerate the decline and possibly result in the extirpation of local chimpanzee (Pan troglodytes verus) populations. We present the epidemiology of a cryptic pathogen and show that its presence has important implications for conservation

    Relative Roles of Grey Squirrels, Supplementary Feeding, and Habitat in Shaping Urban Bird Assemblages

    Get PDF
    Non-native species are frequently considered to influence urban assemblages. The grey squirrel Sciurus carolinensis is one such species that is widespread in the UK and is starting to spread across Europe; it predates birds’ nests and can compete with birds for supplementary food. Using distance sampling across the urbanisation intensity gradient in Sheffield (UK) we test whether urban grey squirrels influence avian species richness and density through nest predation and competition for supplementary food sources. We also assess how urban bird assemblages respond to supplementary feeding. We find that grey squirrels slightly reduced the abundance of breeding bird species most sensitive to squirrel nest predation by reducing the beneficial impact of woodland cover. There was no evidence that grey squirrel presence altered relationships between supplementary feeding and avian assemblage structure. This may be because, somewhat surprisingly, supplementary feeding was not associated with the richness or density of wintering bird assemblages. These associations were positive during the summer, supporting advocacy to feed birds during the breeding season and not just winter, but explanatory capacity was limited. The amount of green space and its quality, assessed as canopy cover, had a stronger influence on avian species richness and population size than the presence of grey squirrels and supplementary feeding stations. Urban bird populations are thus more likely to benefit from investment in improving the availability of high quality habitats than controlling squirrel populations or increased investment in supplementary feeding
    corecore