33 research outputs found

    Chromatin and epigenetics: current biophysical views

    Get PDF
    Recent advances in high-throughput sequencing experiments and their theoretical descriptions have determined fast dynamics of the "chromatin and epigenetics" field, with new concepts appearing at high rate. This field includes but is not limited to the study of DNA-protein-RNA interactions, chromatin packing properties at different scales, regulation of gene expression and protein trafficking in the cell nucleus, binding site search in the crowded chromatin environment and modulation of physical interactions by covalent chemical modifications of the binding partners. The current special issue does not pretend for the full coverage of the field, but it rather aims to capture its development and provide a snapshot of the most recent concepts and approaches. Eighteen open-access articles comprising this issue provide a delicate balance between current theoretical and experimental biophysical approaches to uncover chromatin structure and understand epigenetic regulation, allowing free flow of new ideas and preliminary results

    Factors predicting clinically significant fatigue in women following treatment for primary breast cancer

    Get PDF
    Cancer-related fatigue is common, complex, and distressing. It affects 70–100% of patients receiving chemotherapy and a significant number who have completed their treatments. We assessed a number of variables in women newly diagnosed with primary breast cancer (BrCa) to determine whether biological and/or functional measures are likely to be associated with the development of clinically significant fatigue (CSF). Two hundred twenty-three women participated in a study designed to document the impact of the diagnosis and treatment of primary breast cancer on function. Forty-four had complete data on all variables of interest at the time of confirmed diagnosis but prior to treatment (baseline) and ≥9 months post-diagnosis. Objective measures and descriptive variables included history, physical examination, limb volume, hemoglobin, white blood cell count, and glucose. Patient-reported outcomes included a verbal numerical rating of fatigue (0–10, a score of ≥4 was CSF), five subscales of the SF-36, Physical Activity Survey, and Sleep Questionnaire. At baseline, the entire cohort (n = 223) and the subset (n = 44) were not significantly different for demographic, biological, and self-reported data, except for younger age (p = 0.03) and ER+ (p = 0.01). Forty-five percent had body mass index (BMI) ≥ 25, 52% were post-menopause, and 52% received modified radical mastectomy, 39% lumpectomy, 52% chemotherapy, 68% radiation, and 86% hormonal therapy. Number of patients with CSF increased from 1 at baseline to 11 at ≥9 months of follow-up. CSF at ≥9 months significantly correlated with BMI ≥ 25, abnormal white blood cell count, and increase in limb volume and inversely correlated with vigorous activity and physical function (p < 0.05). Fatigue increases significantly following the treatment of BrCa. Predictors of CSF include high BMI and WBC count, increase in limb volume, and low level of physical activity. These are remediable

    Two-component signal transduction system CBO0787/ CBO0786 represses transcription from botulinum neurotoxin promoters in Clostridium botulinum ATCC 3502

    Get PDF
    Blocking neurotransmission, botulinum neurotoxin is the most poisonous biological substance known to mankind. Despite its infamy as the scourge of the food industry, the neurotoxin is increasingly used as a pharmaceutical to treat an expanding range of muscle disorders. Whilst neurotoxin expression by the spore-forming bacterium Clostridium botulinum appears tightly regulated, to date only positive regulatory elements, such as the alternative sigma factor BotR, have been implicated in this control. The identification of negative regulators has proven to be elusive. Here, we show that the two-component signal transduction system CBO0787/CBO0786 negatively regulates botulinum neurotoxin expression. Single insertional inactivation of cbo0787 encoding a sensor histidine kinase, or of cbo0786 encoding a response regulator, resulted in significantly elevated neurotoxin gene expression levels and increased neurotoxin production. Recombinant CBO0786 regulator was shown to bind to the conserved -10 site of the core promoters of the ha and ntnh-botA operons, which encode the toxin structural and accessory proteins. Increasing concentration of CBO0786 inhibited BotR-directed transcription from the ha and ntnh-botA promoters, demonstrating direct transcriptional repression of the ha and ntnh-botA operons by CBO0786. Thus, we propose that CBO0786 represses neurotoxin gene expression by blocking BotR-directed transcription from the neurotoxin promoters. This is the first evidence of a negative regulator controlling botulinum neurotoxin production. Understanding the neurotoxin regulatory mechanisms is a major target of the food and pharmaceutical industries alike

    The role of behavioural modification and exercise in the management of cancer-related fatigue to reduce its impact during and after cancer treatment.

    No full text
    BACKGROUND: Fatigue is a symptom that can occur during treatment as an acute side effect but can also result in persistent fatigue as a long-term side effect or late effect. MATERIALS AND METHODS: We undertook a narrative review of the current literature and discuss the current evidence of assessment of fatigue and we specifically focus on the role of promoting behavioural change and focused rehabilitation to minimise these long-term effects and update the literature relating to this area from 2012 to date. RESULTS: We suggest there are behavioural change models that can be scaled up to enable patients to manage long-term fatigue using exercise. However, from this updated review there are limitations to the current infrastructure and evidence base that will impact on the ability to do this. CONCLUSION: We continually need to raise awareness amongst health professionals to continue to suggest modifications to impact on fatigue at all stages of cancer treatment and into survivorship and late effects. These can range from simple brief interventions suggested in the clinic to full scale rehabilitation programmes if the correct infrastructure is available. Whichever approach is adopted we suggest exercise will be the mainstay of the treatment of fatigue in this group

    Functional Overexpression and Purification of a Codon Optimized Synthetic Glucarpidase (Carboxypeptidase G2) in Escherichia coli

    No full text
    Glucarpidase (former name: carboxypeptidase G2, or CPG2) is a bacterial enzyme that is widely used in detoxification of the cytotoxic drug, methotrexate, and in Antibody Directed Enzyme Prodrug Therapy for cancer treatment. The glucarpidase gene of Pseudomonas sp. strain RS-16 was previously cloned in E coli, but expresses at a level that is approximately 100-fold lower than in the native strain. In this study, a synthetic gene coding for glucarpidase was codon-optimised and synthesized for maximum expression in E. coli using the vector pET28a. Our work indicated that the enzyme was expressed to ~60% of the total host protein and that purification of the recombinant His-tagged protein could be achieved in a single step by Ni2+ charged column chromatography. The synthetic recombinant glucarpidase expressed within this system was biologically active and zinc dependant. Our study showed that Mg2+ as well as Mn2+ ions inhibit the activity of the recombinant enzym
    corecore