136 research outputs found

    Metabolic flexibility as a major predictor of spatial distribution in microbial communities

    Get PDF
    A better understand the ecology of microbes and their role in the global ecosystem could be achieved if traditional ecological theories can be applied to microbes. In ecology organisms are defined as specialists or generalists according to the breadth of their niche. Spatial distribution is often used as a proxy measure of niche breadth; generalists have broad niches and a wide spatial distribution and specialists a narrow niche and spatial distribution. Previous studies suggest that microbial distribution patterns are contrary to this idea; a microbial generalist genus (Desulfobulbus) has a limited spatial distribution while a specialist genus (Methanosaeta) has a cosmopolitan distribution. Therefore, we hypothesise that this counter-intuitive distribution within generalist and specialist microbial genera is a common microbial characteristic. Using molecular fingerprinting the distribution of four microbial genera, two generalists, Desulfobulbus and the methanogenic archaea Methanosarcina, and two specialists, Methanosaeta and the sulfate-reducing bacteria Desulfobacter were analysed in sediment samples from along a UK estuary. Detected genotypes of both generalist genera showed a distinct spatial distribution, significantly correlated with geographic distance between sites. Genotypes of both specialist genera showed no significant differential spatial distribution. These data support the hypothesis that the spatial distribution of specialist and generalist microbes does not match that seen with specialist and generalist large organisms. It may be that generalist microbes, while having a wider potential niche, are constrained, possibly by intrageneric competition, to exploit only a small part of that potential niche while specialists, with far fewer constraints to their niche, are more capable of filling their potential niche more effectively, perhaps by avoiding intrageneric competition. We suggest that these counter-intuitive distribution patterns may be a common feature of microbes in general and represent a distinct microbial principle in ecology, which is a real challenge if we are to develop a truly inclusive ecology

    COD/sulfate ratio does not affect the methane yield and microbial diversity in anaerobic digesters.

    Get PDF
    Anaerobic digestion of organic matter is the major route of biomethane production. However, in the presence of sulfate, sulfate-reducing bacteria (SRB) typically outcompete methanogens, which may reduce or even preclude methane production from sulfate-containing wastewaters. Although sulfate-reduction and methanogenesis can occur simultaneously, our limited understanding of the microbiology of anaerobic digesters treating sulfate-containing wastewaters constrains improvements in the production of methane from these systems. This study tested the effects of carbon sources and chemical oxygen demand-to-sulfate ratio (COD/SO42-) on the diversity and interactions of SRB and methanogens in an anaerobic digester treating a high-sulfate waste stream. Overall, the data showed that sulfate removal and methane generation occurred in varying efficiencies and the carbon source had limited effect on the methane yield. Importantly, the results demonstrated that methanogenic and SRB diversities were only affected by the carbon source and not by the COD/SO42- ratio

    Direct biological fixation provides a freshwater sink for N2O.

    Get PDF
    Nitrous oxide (N2O) is a potent climate gas, with its strong warming potential and ozone-depleting properties both focusing research on N2O sources. Although a sink for N2O through biological fixation has been observed in the Pacific, the regulation of N2O-fixation compared to canonical N2-fixation is unknown. Here we show that both N2O and N2 can be fixed by freshwater communities but with distinct seasonalities and temperature dependencies. N2O fixation appears less sensitive to temperature than N2 fixation, driving a strong sink for N2O in colder months. Moreover, by quantifying both N2O and N2 fixation we show that, rather than N2O being first reduced to N2 through denitrification, N2O fixation is direct and could explain the widely reported N2O sinks in natural waters. Analysis of the nitrogenase (nifH) community suggests that while only a subset is potentially capable of fixing N2O they maintain a strong, freshwater sink for N2O that could be eroded by warming

    Conserving the Stage: Climate Change and the Geophysical Underpinnings of Species Diversity

    Get PDF
    Conservationists have proposed methods for adapting to climate change that assume species distributions are primarily explained by climate variables. The key idea is to use the understanding of species-climate relationships to map corridors and to identify regions of faunal stability or high species turnover. An alternative approach is to adopt an evolutionary timescale and ask ultimately what factors control total diversity, so that over the long run the major drivers of total species richness can be protected. Within a single climatic region, the temperate area encompassing all of the Northeastern U.S. and Maritime Canada, we hypothesized that geologic factors may take precedence over climate in explaining diversity patterns. If geophysical diversity does drive regional diversity, then conserving geophysical settings may offer an approach to conservation that protects diversity under both current and future climates. Here we tested how well geology predicts the species diversity of 14 US states and three Canadian provinces, using a comprehensive new spatial dataset. Results of linear regressions of species diversity on all possible combinations of 23 geophysical and climatic variables indicated that four geophysical factors; the number of geological classes, latitude, elevation range and the amount of calcareous bedrock, predicted species diversity with certainty (adj. R2 = 0.94). To confirm the species-geology relationships we ran an independent test using 18,700 location points for 885 rare species and found that 40% of the species were restricted to a single geology. Moreover, each geology class supported 5–95 endemic species and chi-square tests confirmed that calcareous bedrock and extreme elevations had significantly more rare species than expected by chance (P<0.0001), strongly corroborating the regression model. Our results suggest that protecting geophysical settings will conserve the stage for current and future biodiversity and may be a robust alternative to species-level predictions

    Direct enzymatic esterification of cotton and Avicel with wild-type and engineered cutinases

    Get PDF
    In this work, the surface of cellulose, either Avicel or cotton fabric, was modified using cutinases without any previous treatment to swell or to solubilise the polymer. Aiming further improvement of cutinase ester synthase activity on cellulose, an engineered cutinase was investigated. Wild-type cutinase from Fusarium solani and its fusion with the carbohydrate-binding module N1 from Cellulomonas fimi were able to esterify the hydroxyl groups of cellulose with distinct efficiencies depending on the acid substrate/solvent system used, as shown by titration and by ATR-FTIR. The carbonyl stretching peak area increased significantly after enzymatic treatment during 72 h at 30 °C. Cutinase treatment resulted in relative increases of 31 and 9 % when octanoic acid and vegetable oil were used as substrates, respectively. Cutinase-N1 treatment resulted in relative increases of 11 and 29 % in the peak area when octanoic acid and vegetable oil were used as substrates, respectively. The production and application of cutinase fused with the domain N1 as a cellulose ester synthase, here reported for the first time, is therefore an interesting strategy to pursuit.This work was co-funded by the European Social Fund through the management authority POPH and FCT, Postdoctoral fellowship reference: SFRH/BPD/47555/2008. The authors also want to thank Doctor Raul Machado for his valuable help on FTIR spectral data treatment

    Ancient Nursery Area for the Extinct Giant Shark Megalodon from the Miocene of Panama

    Get PDF
    BACKGROUND: As we know from modern species, nursery areas are essential shark habitats for vulnerable young. Nurseries are typically highly productive, shallow-water habitats that are characterized by the presence of juveniles and neonates. It has been suggested that in these areas, sharks can find ample food resources and protection from predators. Based on the fossil record, we know that the extinct Carcharocles megalodon was the biggest shark that ever lived. Previous proposed paleo-nursery areas for this species were based on the anecdotal presence of juvenile fossil teeth accompanied by fossil marine mammals. We now present the first definitive evidence of ancient nurseries for C. megalodon from the late Miocene of Panama, about 10 million years ago. METHODOLOGY/PRINCIPAL FINDINGS: We collected and measured fossil shark teeth of C. megalodon, within the highly productive, shallow marine Gatun Formation from the Miocene of Panama. Surprisingly, and in contrast to other fossil accumulations, the majority of the teeth from Gatun are very small. Here we compare the tooth sizes from the Gatun with specimens from different, but analogous localities. In addition we calculate the total length of the individuals found in Gatun. These comparisons and estimates suggest that the small size of Gatun's C. megalodon is neither related to a small population of this species nor the tooth position within the jaw. Thus, the individuals from Gatun were mostly juveniles and neonates, with estimated body lengths between 2 and 10.5 meters. CONCLUSIONS/SIGNIFICANCE: We propose that the Miocene Gatun Formation represents the first documented paleo-nursery area for C. megalodon from the Neotropics, and one of the few recorded in the fossil record for an extinct selachian. We therefore show that sharks have used nursery areas at least for 10 millions of years as an adaptive strategy during their life histories

    Conceptualizing pathways linking women's empowerment and prematurity in developing countries.

    Get PDF
    BackgroundGlobally, prematurity is the leading cause of death in children under the age of 5. Many efforts have focused on clinical approaches to improve the survival of premature babies. There is a need, however, to explore psychosocial, sociocultural, economic, and other factors as potential mechanisms to reduce the burden of prematurity. Women's empowerment may be a catalyst for moving the needle in this direction. The goal of this paper is to examine links between women's empowerment and prematurity in developing settings. We propose a conceptual model that shows pathways by which women's empowerment can affect prematurity and review and summarize the literature supporting the relationships we posit. We also suggest future directions for research on women's empowerment and prematurity.MethodsThe key words we used for empowerment in the search were "empowerment," "women's status," "autonomy," and "decision-making," and for prematurity we used "preterm," "premature," and "prematurity." We did not use date, language, and regional restrictions. The search was done in PubMed, Population Information Online (POPLINE), and Web of Science. We selected intervening factors-factors that could potentially mediate the relationship between empowerment and prematurity-based on reviews of the risk factors and interventions to address prematurity and the determinants of those factors.ResultsThere is limited evidence supporting a direct link between women's empowerment and prematurity. However, there is evidence linking several dimensions of empowerment to factors known to be associated with prematurity and outcomes for premature babies. Our review of the literature shows that women's empowerment may reduce prematurity by (1) preventing early marriage and promoting family planning, which will delay age at first pregnancy and increase interpregnancy intervals; (2) improving women's nutritional status; (3) reducing domestic violence and other stressors to improve psychological health; and (4) improving access to and receipt of recommended health services during pregnancy and delivery to help prevent prematurity and improve survival of premature babies.ConclusionsWomen's empowerment is an important distal factor that affects prematurity through several intervening factors. Improving women's empowerment will help prevent prematurity and improve survival of preterm babies. Research to empirically show the links between women's empowerment and prematurity is however needed
    • …
    corecore