363 research outputs found

    The influence of physical exercise on the generation of TGF-β1, PDGF-AA, and VEGF-A in adipose tissue

    Get PDF
    Adipose tissue is an important organ that produces and secretes hormones and cytokines, including TGF-β1, PDGF-AA, and VEGF-A. The goal of the present study was to investigate the influence of a single session of acute exercise, as well as the prolonged endurance training on the production of TGF-β1, PDGF-AA, and VEGF-A in the subcutaneous white adipose tissue in rats. Rats were randomly divided into two groups: untrained (UT, n = 30) and trained rats (T, subjected to 6-week endurance training with increasing load, n = 29). Both groups were subjected to an acute exercise session with the same work load. The rats were killed before (UTpre, Tpre), immediately after (UT0h, T0h), or 3 h (UT3h, T3h) after exercise and adipose tissue samples collected. Growth factor mRNA was evaluated using RT-PCR; the protein levels were measured before and after training (UTpre and Tpre) using the immunoenzymatic method. TGF-β1 and PDGF-AA mRNA levels were decreased in the UT3h rats compared to the UTpre rats (P = 0.0001 and P = 0.03, respectively), but the VEGF-A mRNA level remained unchanged in the UT0h and UT3h rats compared to UTpre rats. TGF-β1, PDGF-AA and VEGF-A mRNA levels were decreased in the T3h rats compared to Tpre (P = 0.0002, P = 0.02, and P = 0.03, respectively). TGF-β1, PDGF-AA and VEGF-A mRNA levels significantly increased in the Tpre rats compared to UTpre (all P = 0.0002). However, the protein levels remained constant. In conclusion, prolonged physical exercise increases growth factor mRNA in adipose tissue but not protein levels

    Genetic background determines response to hemostasis and thrombosis

    Get PDF
    BACKGROUND: Thrombosis is the fatal and disabling consequence of cardiovascular diseases, the leading cause of mortality and morbidity in Western countries. Two inbred mouse strains, C57BL/6J and A/J, have marked differences in susceptibility to obesity, atherosclerosis, and vessel remodeling. However, it is unclear how these diverse genetic backgrounds influence pathways known to regulate thrombosis and hemostasis. The objective of this study was to evaluate thrombosis and hemostasis in these two inbred strains and determine the phenotypic response of A/J chromosomes in the C57BL/6J background. METHODS: A/J and C57Bl/6J mice were evaluated for differences in thrombosis and hemostasis. A thrombus was induced in the carotid artery by application of the exposed carotid to ferric chloride and blood flow measured until the vessel occluded. Bleeding and rebleeding times, as surrogate markers for thrombosis and hemostasis, were determined after clipping the tail and placing in warm saline. Twenty-one chromosome substitution strains, A/J chromosomes in a C57BL/6J background, were screened for response to the tail bleeding assay. RESULTS: Thrombus occlusion time was markedly decreased in the A/J mice compared to C57BL/6J mice. Tail bleeding time was similar in the two strains, but rebleeding time was markedly increased in the A/J mice compared to C57BL/6J mice. Coagulation times and tail morphology were similar, but tail collagen content was higher in A/J than C57BL/6J mice. Three chromosome substitution strains, B6-Chr5(A/J), B6-Chr11(A/J), and B6-Chr17(A/J), were identified with increased rebleeding time, a phenotype similar to A/J mice. Mice heterosomic for chromosomes 5 or 17 had rebleeding times similar to C57BL/6J mice, but when these two chromosome substitution strains, B6-Chr5(A/J )and B6-Chr17(A/J), were crossed, the A/J phenotype was restored in these doubly heterosomic progeny. CONCLUSION: These results indicate that susceptibility to arterial thrombosis and haemostasis is remarkably different in C57BL/and A/J mice. Three A/J chromosome substitution strains were identified that expressed a phenotype similar to A/J for rebleeding, the C57Bl/6J background could modify the A/J phenotype, and the combination of two A/J QTL could restore the phenotype. The diverse genetic backgrounds and differences in response to vascular injury induced thrombosis and the tail bleeding assay, suggest the potential for identifying novel genetic determinants of thrombotic risk

    Dihydrotestosterone Ameliorates Degeneration in Muscle, Axons and Motoneurons and Improves Motor Function in Amyotrophic Lateral Sclerosis Model Mice

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a lethal disease characterized by a progressive loss of motoneurons. The clinical symptoms include skeletal muscle weakness and atrophy, which impairs motor performance and eventually leads to respiratory failure. We tested whether dihydrotestosterone (DHT), which has both anabolic effects on muscle and neuroprotective effects on axons and motoneurons, can ameliorate clinical symptoms in ALS. A silastic tube containing DHT crystals was implanted subcutaneously in SOD1-G93A mice at early symptomatic age when decreases in body weight and grip-strength were observed as compared to wild-type mice. DHT-treated SOD1-G93A mice demonstrated ameliorated muscle atrophy and increased body weight, which was associated with stronger grip-strength. DHT treatment increased the expression of insulin-like growth factor-1 in muscle, which can exert myotrophic as well as neurotrophic effects through retrograde transport. DHT treatment attenuated neuromuscular junction denervation, and axonal and motoneuron loss. DHT-treated SOD1-G93A mice demonstrated improvement in motor behavior as assessed by rota-rod and gait analyses, and an increased lifespan. Application of DHT is a relatively simple and non-invasive procedure, which may be translated into therapy to improve the quality of life for ALS patients

    Human Induced Pluripotent Stem Cells Differentiation into Oligodendrocyte Progenitors and Transplantation in a Rat Model of Optic Chiasm Demyelination

    Get PDF
    BACKGROUND: This study aims to differentiate human induced pluripotent stem cells (hiPSCs) into oligodendrocyte precursors and assess their recovery potential in a demyelinated optic chiasm model in rats. METHODOLOGY/PRINCIPAL FINDINGS: We generated a cell population of oligodendrocyte progenitors from hiPSCs by using embryoid body formation in a defined medium supplemented with a combination of factors, positive selection and mechanical enrichment. Real-time polymerase chain reaction and immunofluorescence analyses showed that stage-specific markers, Olig2, Sox10, NG2, PDGFRα, O4, A2B5, GalC, and MBP were expressed following the differentiation procedure, and enrichment of the oligodendrocyte lineage. These results are comparable with the expression of stage-specific markers in human embryonic stem cell-derived oligodendrocyte lineage cells. Transplantation of hiPSC-derived oligodendrocyte progenitors into the lysolecithin-induced demyelinated optic chiasm of the rat model resulted in recovery from symptoms, and integration and differentiation into oligodendrocytes were detected by immunohistofluorescence staining against PLP and MBP, and measurements of the visual evoked potentials. CONCLUSIONS/SIGNIFICANCE: These results showed that oligodendrocyte progenitors generated efficiently from hiPSCs can be used in future biomedical studies once safety issues have been overcome

    The Ghrelin Signalling System Is Involved in the Consumption of Sweets

    Get PDF
    The gastric-derived orexigenic peptide ghrelin affects brain circuits involved in energy balance as well as in reward. Indeed, ghrelin activates an important reward circuit involved in natural- as well as drug-induced reward, the cholinergic-dopaminergic reward link. It has been hypothesized that there is a common reward mechanism for alcohol and sweet substances in both animals and humans. Alcohol dependent individuals have higher craving for sweets than do healthy controls and the hedonic response to sweet taste may, at least in part, depend on genetic factors. Rat selectively bred for high sucrose intake have higher alcohol consumption than non-sucrose preferring rats and vice versa. In the present study a group of alcohol-consuming individuals selected from a population cohort was investigated for genetic variants of the ghrelin signalling system in relation to both their alcohol and sucrose consumption. Moreover, the effects of GHS-R1A antagonism on voluntary sucrose- intake and operant self-administration, as well as saccharin intake were investigated in preclinical studies using rodents. The effects of peripheral grelin administration on sucrose intake were also examined. Here we found associations with the ghrelin gene haplotypes and increased sucrose consumption, and a trend for the same association was seen in the high alcohol consumers. The preclinical data show that a GHS-R1A antagonist reduces the intake and self-administration of sucrose in rats as well as saccharin intake in mice. Further, ghrelin increases the intake of sucrose in rats. Collectively, our data provide a clear indication that the GHS-R1A antagonists reduces and ghrelin increases the intake of rewarding substances and hence, the central ghrelin signalling system provides a novel target for the development of drug strategies to treat addictive behaviours

    Experience-Dependent Plasticity and Modulation of Growth Regulatory Molecules at Central Synapses

    Get PDF
    Structural remodeling or repair of neural circuits depends on the balance between intrinsic neuronal properties and regulatory cues present in the surrounding microenvironment. These processes are also influenced by experience, but it is still unclear how external stimuli modulate growth-regulatory mechanisms in the central nervous system. We asked whether environmental stimulation promotes neuronal plasticity by modifying the expression of growth-inhibitory molecules, specifically those of the extracellular matrix. We examined the effects of an enriched environment on neuritic remodeling and modulation of perineuronal nets in the deep cerebellar nuclei of adult mice. Perineuronal nets are meshworks of extracellular matrix that enwrap the neuronal perikaryon and restrict plasticity in the adult CNS. We found that exposure to an enriched environment induces significant morphological changes of Purkinje and precerebellar axon terminals in the cerebellar nuclei, accompanied by a conspicuous reduction of perineuronal nets. In the animals reared in an enriched environment, cerebellar nuclear neurons show decreased expression of mRNAs coding for key matrix components (as shown by real time PCR experiments), and enhanced activity of matrix degrading enzymes (matrix metalloproteinases 2 and 9), which was assessed by in situ zymography. Accordingly, we found that in mutant mice lacking a crucial perineuronal net component, cartilage link protein 1, perineuronal nets around cerebellar neurons are disrupted and plasticity of Purkinje cell terminal is enhanced. Moreover, all the effects of environmental stimulation are amplified if the afferent Purkinje axons are endowed with enhanced intrinsic growth capabilities, induced by overexpression of GAP-43. Our observations show that the maintenance and growth-inhibitory function of perineuronal nets are regulated by a dynamic interplay between pre- and postsynaptic neurons. External stimuli act on this interaction and shift the balance between synthesis and removal of matrix components in order to facilitate neuritic growth by locally dampening the activity of inhibitory cues

    Effects of Chronic Calorie Restriction or Dietary Resveratrol Supplementation on Insulin Sensitivity Markers in a Primate, Microcebus murinus

    Get PDF
    The prevalence of diabetes and hyperinsulinemia increases with age, inducing metabolic failure and limiting lifespan. Calorie restriction (CR) without malnutrition delays the aging process, but its long-term application to humans seems difficult. Resveratrol (RSV), a dietary polyphenol, appears to be a promising CR mimetic that can be easily administered in humans. In this work, we hypothesized that both CR and RSV impact insulin sensitivity in a non-human primate compared to standard-fed control (CTL) animals. Four- to five-year-old male grey mouse lemurs (Microcebus murinus) were assigned to three dietary groups: a CTL group, a CR group receiving 30% fewer calories than the CTL and a RSV group receiving the CTL diet supplemented with RSV (200 mg·day−1·kg−1). Insulin sensitivity and glycemia were assessed using an oral glucose tolerance test (OGTT) and the homeostasis model assessment of insulin resistance (HOMA-IR index) evaluation after 21 or 33 months of chronic treatment. Resting metabolic rate was also measured to assess the potential relationships between this energy expenditure parameter and insulin sensitivity markers. No differences were found after a 21-month period of treatment, except for lower glucose levels 30 min after glucose loading in CR animals. After 33 months, CR and RSV decreased glycemia after the oral glucose loading without decreasing fasting blood insulin. A general effect of treatment was observed on the HOMA-IR index, with an 81% reduction in CR animals and 53% in RSV animals after 33 months of treatment compared to CTL. Chronic CR and dietary supplementation with RSV affected insulin sensitivity by improving the glucose tolerance of animals without disturbing their baseline insulin secretion. These results suggest that both CR and RSV have beneficial effects on metabolic alterations, although these effects are different in amplitude between the two anti-aging treatments and potentially rely on different metabolic changes

    Resuscitation of Newborn Piglets. Short-Term Influence of FiO2 on Matrix Metalloproteinases, Caspase-3 and BDNF

    Get PDF
    Perinatal hypoxia-ischemia is a major cause of mortality and cerebral morbidity, and using oxygen during newborn resuscitation may further harm the brain. The aim was to examine how supplementary oxygen used for newborn resuscitation would influence early brain tissue injury, cell death and repair processes and the regulation of genes related to apoptosis, neurodegeneration and neuroprotection.Anesthetized newborn piglets were subjected to global hypoxia and then randomly assigned to resuscitation with 21%, 40% or 100% O(2) for 30 min and followed for 9 h. An additional group received 100% O(2) for 30 min without preceding hypoxia. The left hemisphere was used for histopathology and immunohistochemistry and the right hemisphere was used for in situ zymography in the corpus striatum; gene expression and the activity of various relevant biofactors were measured in the frontal cortex. There was an increase in the net matrix metalloproteinase gelatinolytic activity in the corpus striatum from piglets resuscitated with 100% oxygen vs. 21%. Hematoxylin-eosin (HE) staining revealed no significant changes. Nine hours after oxygen-assisted resuscitation, caspase-3 expression and activity was increased by 30-40% in the 100% O(2) group (n = 9/10) vs. the 21% O(2) group (n = 10; p<0.04), whereas brain-derived neurotrophic factor (BDNF) activity was decreased by 65% p<0.03.The use of 100% oxygen for resuscitation resulted in increased potentially harmful proteolytic activities and attenuated BDNF activity when compared with 21%. Although there were no significant changes in short term cell loss, hyperoxia seems to cause an early imbalance between neuroprotective and neurotoxic mechanisms that might compromise the final pathological outcome

    TBK1: a new player in ALS linking autophagy and neuroinflammation.

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disorder affecting motor neurons, resulting in progressive muscle weakness and death by respiratory failure. Protein and RNA aggregates are a hallmark of ALS pathology and are thought to contribute to ALS by impairing axonal transport. Mutations in several genes known to contribute to ALS result in deposition of their protein products as aggregates; these include TARDBP, C9ORF72, and SOD1. In motor neurons, this can disrupt transport of mitochondria to areas of metabolic need, resulting in damage to cells and can elicit a neuroinflammatory response leading to further neuronal damage. Recently, eight independent human genetics studies have uncovered a link between TANK-binding kinase 1 (TBK1) mutations and ALS. TBK1 belongs to the IKK-kinase family of kinases that are involved in innate immunity signaling pathways; specifically, TBK1 is an inducer of type-1 interferons. TBK1 also has a major role in autophagy and mitophagy, chiefly the phosphorylation of autophagy adaptors. Several other ALS genes are also involved in autophagy, including p62 and OPTN. TBK1 is required for efficient cargo recruitment in autophagy; mutations in TBK1 may result in impaired autophagy and contribute to the accumulation of protein aggregates and ALS pathology. In this review, we focus on the role of TBK1 in autophagy and the contributions of this process to the pathophysiology of ALS
    corecore