28 research outputs found

    An off-board quantum point contact as a sensitive detector of cantilever motion

    Full text link
    Recent advances in the fabrication of microelectromechanical systems (MEMS) and their evolution into nanoelectromechanical systems (NEMS) have allowed researchers to measure extremely small forces, masses, and displacements. In particular, researchers have developed position transducers with resolution approaching the uncertainty limit set by quantum mechanics. The achievement of such resolution has implications not only for the detection of quantum behavior in mechanical systems, but also for a variety of other precision experiments including the bounding of deviations from Newtonian gravity at short distances and the measurement of single spins. Here we demonstrate the use of a quantum point contact (QPC) as a sensitive displacement detector capable of sensing the low-temperature thermal motion of a nearby micromechanical cantilever. Advantages of this approach include versatility due to its off-board design, compatibility with nanoscale oscillators, and, with further development, the potential to achieve quantum limited displacement detection.Comment: 5 pages, 5 figure

    Hyaluronidase induces a transcapillary pressure gradient and improves the distribution and uptake of liposomal doxorubicin (Caelyxâ„¢) in human osteosarcoma xenografts

    Get PDF
    Liposomal drug delivery enhances the tumour selective localisation and may improve the uptake compared to free drug. However, the drug distribution within the tumour tissue may still be heterogeneous. Degradation of the extracellular matrix is assumed to improve the uptake and penetration of drugs. The effect of the ECM-degrading enzyme hyaluronidase on interstitial fluid pressure and microvascular pressure were measured in human osteosarcoma xenografts by the wick-in-needle and micropipette technique, respectively. The tumour uptake and distribution of liposomal doxorubicin were studied on tumour sections by confocal laser scanning microscopy. The drugs were injected i.v. 1 h after the hyaluronidase pretreatment. Intratumoral injection of hyaluronidase reduced interstitial fluid pressure in a nonlinear dose-dependent manner. Maximum interstitial fluid pressure reduction of approximately 50% was found after injection of 1500 U hyaluronidase. Neither intratumoral nor i.v. injection of hyaluronidase induced any changes in the microvascular pressure. Thus, hyaluronidase induced a transcapillary pressure gradient, resulting in a four-fold increase in the tumour uptake and improving the distribution of the liposomal doxorubicin. Hyaluronidase reduces a major barrier for drug delivery by inducing a transcapillary pressure gradient, and administration of hyaluronidase adjuvant with liposomal doxorubicin may thus improve the therapeutic outcome

    Nuclear Magnetic Resonance Imaging with 90 nm Resolution

    Full text link
    Magnetic resonance imaging, based on the manipulation and detection of nuclear spins, is a powerful imaging technique that typically operates on the scale of millimeters to microns. Using magnetic resonance force microscopy, we have demonstrated that magnetic resonance imaging of nuclear spins can be extended to a spatial resolution better than 100 nm. The two-dimensional imaging of 19F nuclei was done on a patterned CaF2 test object, and was enabled by a detection sensitivity of roughly 1200 nuclear spins. To achieve this sensitivity, we developed high-moment magnetic tips that produced field gradients up to 1.4x10^6 T/m, and implemented a measurement protocol based on force-gradient detection of naturally occurring spin fluctuations. The resulting detection volume of less than 650 zl represents 60,000x smaller volume than previous NMR microscopy and demonstrates the feasibility of pushing magnetic resonance imaging into the nanoscale regime.Comment: 24 pages, 5 figure

    The impact of ocean deoxygenation on iron release from continental margin sediments

    No full text
    In the oceans’ high-nitrate–low-chlorophyll regions, such as the Peru/Humboldt Current system and the adjacent eastern equatorial Pacific1, primary productivity is limited by the micronutrient iron. Within the Peruvian upwelling area, bioavailable iron is released from the reducing continental margin sediments2. The magnitude of this seafloor source could change with fluctuations in the extension or intensity of the oxygen minimum zones3, 4. Here we show that measurements of molybdenum, uranium and iron concentrations can be used as a proxy for sedimentary iron release, and use this proxy to assess iron release from the sea floor beneath the Peru upwelling system during the past 140,000 years. We observe a coupling between levels of denitrification, as indicated by nitrogen isotopes, trace metal proxies for oxygenation, and sedimentary iron concentrations. Specifically, periods with poor upper ocean oxygenation are characterized by more efficient iron retention in the sediment and a diminished iron supply to the water column. We attribute efficient iron retention under more reducing conditions to widespread sulphidic conditions in the surface sediment and concomitant precipitation of iron sulphides. We argue that iron release from continental margin sediments is most effective in a narrow redox window where neither oxygen nor sulphide is present. We therefore suggest that future deoxygenation in the Peru upwelling area would be unlikely to result in increased iron availability, whereas in weaker oxygen minimum zones partial deoxygenation may enhance the iron supply

    Isotopic constraints on carbon exchange between deep ocean sediments and sea water

    Full text link
    THE vast reservoirs of organic carbon in marine sediments1–3 have the potential to influence the properties of organic matter in the overlying water column. For example, it has been suggested that marine sediments are a possible source of the old, refractory dissolved organic carbon (DOC) found in deep water3–4. Natural radiocarbon and stable carbon isotope ratios (Δ14C and δ13C) can be used to constrain the role of sediments in the ocean carbon cycle5–8. Here we report the distributions of Δ14C and δ13C associated with dissolved organic and inorganic carbon in sediment pore water, together with those of the particulate sedimentary organic carbon, from two geochemically distinct marine environments. Concentration gradients of dissolved organic and inorganic carbon across the sediment–water interface imply significant diffusive fluxes of these solutes from the sediment to the water column. But the DOC fraction in the sediments is greatly enriched in 14C compared with that in the overlying sea water (by as much as 370%), indicating that the DOC supplied by sediments to ocean waters must be relatively young, and that its remnant ages in the water column itself. © 2015 Nature Publisher Group
    corecore