767 research outputs found

    Deletion of parasite immune modulatory sequences combined with immune activating signals enhances vaccine mediated protection against filarial nematodes

    Get PDF
    <p>Background: Filarial nematodes are tissue-dwelling parasites that can be killed by Th2-driven immune effectors, but that have evolved to withstand immune attack and establish chronic infections by suppressing host immunity. As a consequence, the efficacy of a vaccine against filariasis may depend on its capacity to counter parasite-driven immunomodulation.</p> <p>Methodology and Principal Findings: We immunised mice with DNA plasmids expressing functionally-inactivated forms of two immunomodulatory molecules expressed by the filarial parasite Litomosoides sigmodontis: the abundant larval transcript-1 (LsALT) and cysteine protease inhibitor-2 (LsCPI). The mutant proteins enhanced antibody and cytokine responses to live parasite challenge, and led to more leukocyte recruitment to the site of infection than their native forms. The immune response was further enhanced when the antigens were targeted to dendritic cells using a single chain Fv-αDEC205 antibody and co-administered with plasmids that enhance T helper 2 immunity (IL-4) and antigen-presenting cell recruitment (Flt3L, MIP-1α). Mice immunised simultaneously against the mutated forms of LsALT and LsCPI eliminated adult parasites faster and consistently reduced peripheral microfilaraemia. A multifactorial analysis of the immune response revealed that protection was strongly correlated with the production of parasite-specific IgG1 and with the numbers of leukocytes present at the site of infection.</p> <p>Conclusions: We have developed a successful strategy for DNA vaccination against a nematode infection that specifically targets parasite-driven immunosuppression while simultaneously enhancing Th2 immune responses and parasite antigen presentation by dendritic cells.</p&gt

    How effective is tetracaine 4% gel, before a peripherally inserted central catheter, in reducing procedural pain in infants: a randomized double-blind placebo controlled trial [ISRCTN75884221]

    Get PDF
    BACKGROUND: Procedural pain relief is sub-optimal in infants, especially small and vulnerable ones. Tetracaine gel 4% (Ametop(®), Smith-Nephew) provides pain relief in children and larger infants, but its efficacy in smaller infants and for peripherally inserted central catheters (PICC) remains uncertain. The objective of this trial was to assess the safety and efficacy of tetracaine gel on the pain response of very low birth weight (VLBW) infants during insertion of a PICC. METHODS: Medically stable infants greater than or equal to 24 weeks gestation, requiring a non-urgent PICC, were included. Following randomization and double blinding, 1.1 g of tetracaine or placebo was applied to the skin for 30 minutes. The PICC was inserted according to a standard protocol. Pain was assessed using the Premature Infant Pain Profile (PIPP). A 3-point change in the pain score was considered clinically significant, leading to a sample size of 54 infants, with 90% statistical power. Local skin reactions and immediate adverse cardiorespiratory events were noted. The primary outcome, PIPP score at 1 minute, was analysed using an independent Student's t-test. RESULTS: Fifty-four infants were included, 27 +/- 2 weeks gestation, 916 +/- 292 grams and 6.5 +/- 3.2 days of age. Baseline characteristics were similar between groups. The mean PIPP score in the first minute was 10.88 in the treatment group as compared to 11.74 in the placebo group (difference 0.86, 95% CI -1.86, 3.58). Median duration of crying in non-intubated infants was 181 seconds in the tetracaine group compared to 68 seconds in the placebo group (difference -78, 95% CI -539, 117). Local skin erythema was observed transiently in 4 infants (3 in the treatment and 1 in the placebo group). No serious harms were observed. CONCLUSION: Tetracaine 4% when applied for 30 minutes was not beneficial in decreasing procedural pain associated with a PICC in very small infants

    Construction of the Sophia Observation withdrawal Symptoms-scale (SOS) for critically ill children

    Get PDF
    Objective: To construct a reliable and clinically practical instrument for monitoring opioids and benzodiazepine withdrawal symptoms in pediatric ICU patients. Design: Instrument development. Setting: Intensive care unit in an academic children's hospital. Patients and participants: 79 patients up to age 16 years on intravenous midazolam and/or opioids for ≥5 days. An expert panel of 85 physicians and nurses rated clinical relevance of withdrawal symptoms. Intervention: During drug weaning repeated observations were performed with a checklist of 24 withdrawal symptoms described in the literature. Measurements and results: For 76 children, 932 observations were obtained within 24 h after decrease and/or discontinuation of midazolam or opioids. Most frequent symptoms were tachypnea, agitation, motor disturbance, diarrhea, fever, anxiety, sleep disturbance and hypertension (14.6-29.6%). Multidimensional scaling (MDS) was performed to detect the underlying empirical structure of co-occurrences of symptoms. An expert panel judged clinical relevance of each withdrawal symptom on a four-point scale ranging from 'definitively so' to 'definitively not'. Agitation, an

    Deficiency and Also Transgenic Overexpression of Timp-3 Both Lead to Compromised Bone Mass and Architecture In Vivo

    Get PDF
    Tissue inhibitor of metalloproteinases-3 (TIMP-3) regulates extracellular matrix via its inhibition of matrix metalloproteinases and membrane-bound sheddases. Timp-3 is expressed at multiple sites of extensive tissue remodelling. This extends to bone where its role, however, remains largely unresolved. In this study, we have used Micro-CT to assess bone mass and architecture, histological and histochemical evaluation to characterise the skeletal phenotype of Timp-3 KO mice and have complemented this by also examining similar indices in mice harbouring a Timp-3 transgene driven via a Col-2a-driven promoter to specifically target overexpression to chondrocytes. Our data show that Timp-3 deficiency compromises tibial bone mass and structure in both cortical and trabecular compartments, with corresponding increases in osteoclasts. Transgenic overexpression also generates defects in tibial structure predominantly in the cortical bone along the entire shaft without significant increases in osteoclasts. These alterations in cortical mass significantly compromise predicted tibial load-bearing resistance to torsion in both genotypes. Neither Timp-3 KO nor transgenic mouse growth plates are significantly affected. The impact of Timp-3 deficiency and of transgenic overexpression extends to produce modification in craniofacial bones of both endochondral and intramembranous origins. These data indicate that the levels of Timp-3 are crucial in the attainment of functionally-appropriate bone mass and architecture and that this arises from chondrogenic and osteogenic lineages

    Priority for the Worse Off and the Social Cost of Carbon

    Get PDF
    The social cost of carbon (SCC) is a monetary measure of the harms from carbon emission. Specifically, it is the reduction in current consumption that produces a loss in social welfare equivalent to that caused by the emission of a ton of CO2. The standard approach is to calculate the SCC using a discounted-utilitarian social welfare function (SWF)—one that simply adds up the well-being numbers (utilities) of individuals, as discounted by a weighting factor that decreases with time. The discounted-utilitarian SWF has been criticized both for ignoring the distribution of well-being, and for including an arbitrary preference for earlier generations. Here, we use a prioritarian SWF, with no time-discount factor, to calculate the SCC in the integrated assessment model RICE. Prioritarianism is a well-developed concept in ethics and theoretical welfare economics, but has been, thus far, little used in climate scholarship. The core idea is to give greater weight to well-being changes affecting worse off individuals. We find substantial differences between the discounted-utilitarian and non-discounted prioritarian SCC

    How managers can build trust in strategic alliances: a meta-analysis on the central trust-building mechanisms

    Get PDF
    Trust is an important driver of superior alliance performance. Alliance managers are influential in this regard because trust requires active involvement, commitment and the dedicated support of the key actors involved in the strategic alliance. Despite the importance of trust for explaining alliance performance, little effort has been made to systematically investigate the mechanisms that managers can use to purposefully create trust in strategic alliances. We use Parkhe’s (1998b) theoretical framework to derive nine hypotheses that distinguish between process-based, characteristic-based and institutional-based trust-building mechanisms. Our meta-analysis of 64 empirical studies shows that trust is strongly related to alliance performance. Process-based mechanisms are more important for building trust than characteristic- and institutional-based mechanisms. The effects of prior ties and asset specificity are not as strong as expected and the impact of safeguards on trust is not well understood. Overall, theoretical trust research has outpaced empirical research by far and promising opportunities for future empirical research exist

    The Escherichia coli transcriptome mostly consists of independently regulated modules

    Get PDF
    Underlying cellular responses is a transcriptional regulatory network (TRN) that modulates gene expression. A useful description of the TRN would decompose the transcriptome into targeted effects of individual transcriptional regulators. Here, we apply unsupervised machine learning to a diverse compendium of over 250 high-quality Escherichia coli RNA-seq datasets to identify 92 statistically independent signals that modulate the expression of specific gene sets. We show that 61 of these transcriptomic signals represent the effects of currently characterized transcriptional regulators. Condition-specific activation of signals is validated by exposure of E. coli to new environmental conditions. The resulting decomposition of the transcriptome provides: a mechanistic, systems-level, network-based explanation of responses to environmental and genetic perturbations; a guide to gene and regulator function discovery; and a basis for characterizing transcriptomic differences in multiple strains. Taken together, our results show that signal summation describes the composition of a model prokaryotic transcriptome
    corecore