93 research outputs found

    Historical Reconstruction Reveals Recovery in Hawaiian Coral Reefs

    Get PDF
    Coral reef ecosystems are declining worldwide, yet regional differences in the trajectories, timing and extent of degradation highlight the need for in-depth regional case studies to understand the factors that contribute to either ecosystem sustainability or decline. We reconstructed social-ecological interactions in Hawaiian coral reef environments over 700 years using detailed datasets on ecological conditions, proximate anthropogenic stressor regimes and social change. Here we report previously undetected recovery periods in Hawaiian coral reefs, including a historical recovery in the MHI (~AD 1400–1820) and an ongoing recovery in the NWHI (~AD 1950–2009+). These recovery periods appear to be attributed to a complex set of changes in underlying social systems, which served to release reefs from direct anthropogenic stressor regimes. Recovery at the ecosystem level is associated with reductions in stressors over long time periods (decades+) and large spatial scales (>103 km2). Our results challenge conventional assumptions and reported findings that human impacts to ecosystems are cumulative and lead only to long-term trajectories of environmental decline. In contrast, recovery periods reveal that human societies have interacted sustainably with coral reef environments over long time periods, and that degraded ecosystems may still retain the adaptive capacity and resilience to recover from human impacts

    Social drivers forewarn of marine regime shifts

    Get PDF
    Some ecosystems can undergo regime shifts to alternative compositions of species. Although ecological indicators can identify approaching regime shifts, we propose that rapid changes in the social drivers underlying ecosystem change may provide additional and potentially earlier indicators of impending shifts. We demonstrate this by reconstructing the underlying social drivers of four iconic marine regime shifts: Pacific kelp forests, Northwest Atlantic continental shelf, Jamaican coral reefs, and the Chesapeake Bay estuary. In all cases, a range of social drivers – including opening of lucrative markets, technological innovations, and policies that enhanced the driver – ultimately prompted these ecosystem shifts. Drawing on examples emerging from environmental management practice, we present three practical recommendations for using social drivers as early indicators: monitor social change, determine social trigger points, and identify policy responses. We argue that accounting for the underlying social drivers of ecosystem change could improve decision making

    Social-ecological alignment and ecological conditions in coral reefs

    Get PDF
    Complex social-ecological interactions underpin many environmental problems. To help capture this complexity, we advance an interdisciplinary network modeling framework to identify important relationships between people and nature that can influence environmental conditions. Drawing on comprehensive social and ecological data from five coral reef fishing communities in Kenya; including interviews with 648 fishers, underwater visual census data of reef ecosystem condition, and time-series landings data; we show that positive ecological conditions are associated with ‘social-ecological network closure’ – i.e., fully linked and thus closed network structures between social actors and ecological resources. Our results suggest that when fishers facing common dilemmas form cooperative communication ties with direct resource competitors, they may achieve positive gains in reef fish biomass and functional richness. Our work provides key empirical insight to a growing body of research on social-ecological alignment, and helps to advance an integrative framework that can be applied empirically in different social-ecological contexts

    The role of human rights in implementing socially responsible seafood

    Get PDF
    Sustainability standards for seafood mainly address environmental performance criteria and are less concerned with the welfare of fisheries workers who produce the seafood. Yet human rights violations such as slavery and human trafficking are widespread in fisheries around the world, and underscore the need for certification bodies and other seafood supply chain actors to improve social performance, in addition to addressing environmental challenges. Calls for socially responsible seafood have referenced human rights law and policy frameworks to shape the guiding principles of socially responsible seafood and to provide the legal machinery to implement these aspirations, but practical guidance on how to achieve this is lacking. To provide clarity on this challenge, we reviewed the literature concerning human rights in the seafood supply chain, and prepared an analysis of opportunities and challenges to implement socially responsible seafood through relevant human rights, legal and policy instruments. We observe that human rights laws are generally framed in favour of addressing violations of civil and political rights, but there remains considerable scope for applying economic, social and cultural (ESC) rights in this context. Other challenges include weakly defined ESC rights infringements, a lack of straightforward mechanisms to enforce human rights entitlements, and practical difficulties such as resources to support and secure rights. On the positive side, governments can draw on international instruments to inspire national policies and legislation to eliminate illegalities from the seafood supply chain. However, for socially responsible seafood principles to translate into tangible actions, these objectives must be rooted in clear legal obligations and be supported by sufficient national capacity and political will

    Parsing human and biophysical drivers of coral reef regimes

    Get PDF
    Coral reefs worldwide face unprecedented cumulative anthropogenic effects of interacting local human pressures, global climate change and distal social processes. Reefs are also bound by the natural biophysical environment within which they exist. In this context, a key challenge for effective management is understanding how anthropogenic and biophysical conditions interact to drive distinct coral reef configurations. Here, we use machine learning to conduct explanatory predictions on reef ecosystems defined by both fish and benthic communities. Drawing on the most spatially extensive dataset available across the Hawaiian archipelago-20 anthropogenic and biophysical predictors over 620 survey sites-we model the occurrence of four distinct reef regimes and provide a novel approach to quantify the relative influence of human and environmental variables in shaping reef ecosystems. Our findings highlight the nuances of what underpins different coral reef regimes, the overwhelming importance of biophysical predictors and how a reef's natural setting may either expand or narrow the opportunity space for management interventions. The methods developed through this study can help inform reef practitioners and hold promises for replication across a broad range of ecosystems. © 2019 The Author(s

    Advancing the integration of spatial data to map human and natural drivers on coral reefs

    Get PDF
    <div><p>A major challenge for coral reef conservation and management is understanding how a wide range of interacting human and natural drivers cumulatively impact and shape these ecosystems. Despite the importance of understanding these interactions, a methodological framework to synthesize spatially explicit data of such drivers is lacking. To fill this gap, we established a transferable data synthesis methodology to integrate spatial data on environmental and anthropogenic drivers of coral reefs, and applied this methodology to a case study location–the Main Hawaiian Islands (MHI). Environmental drivers were derived from time series (2002–2013) of climatological ranges and anomalies of remotely sensed sea surface temperature, chlorophyll-<i>a</i>, irradiance, and wave power. Anthropogenic drivers were characterized using empirically derived and modeled datasets of spatial fisheries catch, sedimentation, nutrient input, new development, habitat modification, and invasive species. Within our case study system, resulting driver maps showed high spatial heterogeneity across the MHI, with anthropogenic drivers generally greatest and most widespread on O‘ahu, where 70% of the state’s population resides, while sedimentation and nutrients were dominant in less populated islands. Together, the spatial integration of environmental and anthropogenic driver data described here provides a first-ever synthetic approach to visualize how the drivers of coral reef state vary in space and demonstrates a methodological framework for implementation of this approach in other regions of the world. By quantifying and synthesizing spatial drivers of change on coral reefs, we provide an avenue for further research to understand how drivers determine reef diversity and resilience, which can ultimately inform policies to protect coral reefs.</p></div

    Combining fish and benthic communities into multiple regimes reveals complex reef dynamics

    Get PDF
    Abstract Coral reefs worldwide face an uncertain future with many reefs reported to transition from being dominated by corals to macroalgae. However, given the complexity and diversity of the ecosystem, research on how regimes vary spatially and temporally is needed. Reef regimes are most often characterised by their benthic components; however, complex dynamics are associated with losses and gains in both fish and benthic assemblages. To capture this complexity, we synthesised 3,345 surveys from Hawai‘i to define reef regimes in terms of both fish and benthic assemblages. Model-based clustering revealed five distinct regimes that varied ecologically, and were spatially heterogeneous by island, depth and exposure. We identified a regime characteristic of a degraded state with low coral cover and fish biomass, one that had low coral but high fish biomass, as well as three other regimes that varied significantly in their ecology but were previously considered a single coral dominated regime. Analyses of time series data reflected complex system dynamics, with multiple transitions among regimes that were a function of both local and global stressors. Coupling fish and benthic communities into reef regimes to capture complex dynamics holds promise for monitoring reef change and guiding ecosystem-based management of coral reefs

    Five social science intervention areas for ocean sustainability initiatives

    Get PDF
    Ocean sustainability initiatives – in research, policy, management and development – will be more effective in delivering comprehensive benefits when they proactively engage with, invest in and use social knowledge. We synthesize five intervention areas for social engagement and collaboration with marine social scientists, and in doing so we appeal to all ocean science disciplines and non-academics working in ocean initiatives in industry, government, funding agencies and civil society. The five social intervention areas are: (1) Using ethics to guide decision-making, (2) Improving governance, (3) Aligning human behavior with goals and values, (4) Addressing impacts on people, and (5) Building transdisciplinary partnerships and co-producing sustainability transformation pathways. These focal areas can guide the four phases of most ocean sustainability initiatives (Intention, Design, Implementation, Evaluation) to improve social benefits and avoid harm. Early integration of social knowledge from the five areas during intention setting and design phases offers the deepest potential for delivering benefits. Later stage collaborations can leverage opportunities in existing projects to reflect and learn while improving impact assessments, transparency and reporting for future activities

    Historical Reconstruction Reveals Recovery in Hawaiian Coral Reefs

    Get PDF
    Coral reef ecosystems are declining worldwide, yet regional differences in the trajectories, timing and extent of degradation highlight the need for in-depth regional case studies to understand the factors that contribute to either ecosystem sustainability or decline. We reconstructed social-ecological interactions in Hawaiian coral reef environments over 700 years using detailed datasets on ecological conditions, proximate anthropogenic stressor regimes and social change. Here we report previously undetected recovery periods in Hawaiian coral reefs, including a historical recovery in the MHI (∼AD 1400–1820) and an ongoing recovery in the NWHI (∼AD 1950–2009+). These recovery periods appear to be attributed to a complex set of changes in underlying social systems, which served to release reefs from direct anthropogenic stressor regimes. Recovery at the ecosystem level is associated with reductions in stressors over long time periods (decades+) and large spatial scales (>103 km2). Our results challenge conventional assumptions and reported findings that human impacts to ecosystems are cumulative and lead only to long-term trajectories of environmental decline. In contrast, recovery periods reveal that human societies have interacted sustainably with coral reef environments over long time periods, and that degraded ecosystems may still retain the adaptive capacity and resilience to recover from human impacts
    corecore