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Coral reefs worldwide face unprecedented cumulative anthropogenic effects

of interacting local human pressures, global climate change and distal social

processes. Reefs are also bound by the natural biophysical environment

within which they exist. In this context, a key challenge for effective manage-

ment is understanding how anthropogenic and biophysical conditions

interact to drive distinct coral reef configurations. Here, we use machine

learning to conduct explanatory predictions on reef ecosystems defined by

both fish and benthic communities. Drawing on the most spatially extensive

dataset available across the Hawaiian archipelago—20 anthropogenic and

biophysical predictors over 620 survey sites—we model the occurrence of

four distinct reef regimes and provide a novel approach to quantify the rela-

tive influence of human and environmental variables in shaping reef

ecosystems. Our findings highlight the nuances of what underpins different

coral reef regimes, the overwhelming importance of biophysical predictors

and how a reef’s natural setting may either expand or narrow the opportu-

nity space for management interventions. The methods developed through

this study can help inform reef practitioners and hold promises for replication

across a broad range of ecosystems.
1. Introduction
Coral reef ecosystems worldwide are shifting to alternative regimes, driven by a

combination of human impacts, biotic processes and abiotic conditions [1,2].

Beyond abrupt changes in ecosystem structure and function [2], long-lasting
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regime shifts may bear heavy costs to society through the loss

of ecosystem services associated with a particular regime [3].

They also pose serious challenges for coral reef managers [4],

since reversing undesirable regimes can be difficult and

costly owing to strong reinforcing feedback mechanisms [5,6].

To date, descriptions of alternative reef regimes have

predominantly addressed benthic community structure,

with an emphasis on shifts from coral to algal dominance

[7–9]. Changes in fish assemblages have also been high-

lighted, either as a driver of benthic regime shifts [10] or as

their direct consequence [11]. Given the strong interdepen-

dence between benthic and fish communities on coral reefs

however, disentangling ‘what drives what’ becomes proble-

matic. Recent work by Donovan et al. [12] addresses this

issue by proposing a broader approach that combines both

fish and benthic functional groups as the defining elements

of reef regimes. Such an integrated description of the reef

community provides a more nuanced view of reef regimes

which better captures the complexity of coral reef dynamics.

Yet, what drives the occurrence of these integrated regimes

and how to subsequently prioritize management actions

remain unknown.

In the face of escalating human impacts, such as overfish-

ing, reduced water quality and effects from climate change,

there is growing awareness surrounding the multi-causality

of reef regimes [8] and potential effects of interacting stressors

[13,14]. Effectively managing coral reefs therefore requires an

accurate, and often context-specific, understanding of how mul-

tiple drivers combine to support or undermine different

regimes. In particular, discerning the relative influence of

anthropogenic versus biophysical drivers is critical to appreci-

ate how environmental conditions might limit or favour

different management options. Although humans can

become the dominant force determining coral reef ecosystem

state [15], variations in biophysical drivers, such as waves

and primary productivity, set natural bounds on ecosystem

condition even in the absence of local human influence [16,17].

The main Hawaiian Islands—the populated portion of the

Hawaiian archipelago, hereafter referred to as the Hawaiian

Islands for brevity—span gradients in both environmental

conditions [18] and human pressures [19], allowing for an

exploration of their relative importance in determining the

spatial distribution of reef regimes. The Hawaiian Islands

are also the focus of one of the most extensive spatial data-

bases of biophysical and anthropogenic predictors available

for a coastal ecosystem [20]. Here, we use this database to pre-

dict the occurrence of multiple reef regimes defined by both

fish and benthic communities. We apply boosted regression

trees to quantify the relative influence of each biophysical

and anthropogenic predictor, identify relationships between

predictors and regimes, and characterize interaction patterns.

Identifying what predicts different reef ecosystem regimes

and how the natural environment can influence management

opportunities is essential to help practitioners effectively

anticipate, avoid and respond to coral reef change.
2. Methods
(a) Study area and reef regimes
Situated in the middle of the Pacific Ocean, the Hawaiian Islands

consist of eight high volcanic islands with varying human popu-

lation density and exposure to natural forces [19]. The study
builds on data from more than 1000 forereef habitat sampling

locations (i.e. reef slope habitat exposed to the open ocean)

across the region that were recently classified into five reef

regimes using model-based clustering of 10 fish and benthic

functional groups (electronic supplementary material, table S1).

Each cluster is a mixture of multivariate distributions composed

of the densities of each component (i.e. fish and benthic func-

tional groups), and each observation is assigned to a cluster

based on the probability of membership given the observation

[12]. Out of the five regimes, however, Donovan et al. [12] identified

one as a highly variable and transitional state (i.e. regime 4).

Given the ambition to accurately associate predictors to the

spatial occurrence of distinct regimes, we removed the sites

classified into regime 4 to reduce noise in the data and optimize

predictive performance. We also excluded the 25% most

uncertain classifications (i.e. sites with the lowest probability of

being classified again into the same regime), thereby retaining

620 sites most representative of four distinct reef regimes

(figure 1; electronic supplementary material, table S1), and here-

after referred to as regime 1, 2, 3 and 5 for consistency with

Donovan et al. [12].

Sites classified into regime 1 show the characteristics of a

degraded reef, i.e. low fish biomass, low hard coral cover and

high algae cover (electronic supplementary material, table S1).

Regime 2 is characterized by rugose habitat with high fish biomass

(e.g. browsers such as Kyphosus hawaiiensis and Naso unicornis), high

turf and macroalgae cover, and low hard coral cover. Regime 3

exhibits high fish biomass and turf algae cover, no macroalgae

and moderate hard coral cover. Regime 5 displays moderate fish

biomass, less turf algae and higher hard coral cover, commonly

comprised of the coral Porites compressa. For detailed methodology

and description of the regimes, see Donovan et al. [12].
(b) Anthropogenic and biophysical predictors
We reviewed all continuous spatial layers of anthropogenic and

environmental drivers compiled by Wedding et al. [20] for coastal

waters of the Hawaiian Islands and retained a set of 20 predictors

(table 1; electronic supplementary material, table S2) based on

ecological relevance (electronic supplementary material, table S3)

and collinearity analysis (electronic supplementary material,

figure S1 and table S4). We used pairwise relationship correlation

coefficients (no coefficient greater than j0.6j) and variance inflation

factor estimates (scores lower than 3.5) to assess collinearity

among predictors.

The selection of anthropogenic predictors expanded on a

human dimensions framework that identified the primary

human impacts mediating coral reef condition [21]. It includes

catch from commercial and non-commercial fisheries, land-based

stressors (effluent, sedimentation, new development), habitat

modification and invasive species [20]. Non-commercial fisheries

were further characterized by platform (boat- versus shore-

based) and gear types (line, net, spear). Gear types were combined

for non-commercial boat-based fisheries to account for collinearity.

Biophysical predictors were derived from time series of

variables known to be major drivers of coral reef ecosystems:

sea surface temperature, chlorophyll-a (as a proxy for phyto-

plankton biomass and thus primary production), irradiance

and wave power. Five climatological metrics were available for

each predictor: long-term mean, standard deviation of the

long-term mean, maximum monthly climatological mean,

maximum anomaly and frequency of anomalies [18,20]. Choices

were made to eliminate highly correlated metrics (electronic

supplementary material, figure S2), while ensuring for each pre-

dictor that both the actual forcing and its variability were

represented. We used the maximum monthly climatological

mean (i.e. the largest value of the 12 monthly climatological

values averaged over more than 10 years) to represent the



Figure 1. Map of the study area showing the location of 620 sites across the main Hawaiian Islands (Hawai‘i, USA), categorized into four distinct reef regimes.
Key characteristics of each regime are provided below the respective icons. Explore an interactive version of the map at https://stanford.maps.arcgis.com/apps/-
StoryMapBasic/index.html?appid=b50b97f3cadb4c919a85bb6e4dd654cd.
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actual forcing since spatial variations in ecological communities

are largely defined by their climatological envelope as commu-

nities tend to adapt to the extremes in the seasonal cycle [18].

Depending on collinearity (electronic supplementary material,

figure S2), either the standard deviation of the long-term mean

or the frequency of anomalous events (i.e. the percentage of

time above the maximum monthly climatological mean) was

used to capture environmental stability, or lack thereof. The

depth and topographical complexity of the seafloor, derived

from high-resolution bathymetry of the region, were also

included owing to their well-known importance in structuring

reef communities (electronic supplementary material, table S3).

For a majority of the datasets, the temporal range represented

approximately a 10 year average, which matched the temporal

spread of the biological surveys used to identify regimes [12]

and provided an estimate of long-term trends in spatial gradients

rather than a single snapshot in time. For detailed methodology

on each anthropogenic and biophysical predictor raster, see

Wedding et al. [20].

(c) Data analyses
All statistical analyses were conducted using R v. 3.3.2 [22]. Stat-

istical scripts and custom R package ggBRT are available on
GitHub (https://github.com/JBjouffray). We used boosted

regression trees (BRTs) [23] to examine the occurrence of each

regime in relation to anthropogenic and biophysical predictors.

BRTs represent an advanced regression technique that combines

large numbers of relatively simple trees by sequentially fitting

each new tree to the residuals from the previous ones. It

improves predictive performance over more traditional tree fit-

ting techniques with the ability to fit non-linear relationships

and account for complex interactions among predictors [23].

The classification of sites into different regimes was con-

verted to presence-absence of each regime [8] and modelled

using a Bernoulli distribution following the gbm.step routine

[23] in the dismo package v. 1.1-4 [24]. Trees were built with

default parameters to make model outputs comparable among

regimes: a tree complexity of 5, a learning rate of 0.001 and a

bag fraction of 0.75. Tree complexity controls how many levels

of interactions are fitted, learning rate determines the contri-

bution of each new tree to the model and bag fraction specifies

the proportion of data to be randomly selected while fitting

each single decision tree [23,25]. Variation of these parameters

by running all possible combinations of tree complexity (1–5),

learning rate (0.01, 0.005, 0.001, 0.0001) and bag fraction (0.5,

0.7, 0.9) provided negligible improvements in predictive

performance.

https://github.com/JBjouffray
https://github.com/JBjouffray
https://stanford.maps.arcgis.com/apps/StoryMapBasic/index.html?appid=b50b97f3cadb4c919a85bb6e4dd654cd
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Table 1. Predictor variables used to explain the occurrence of multiple reef regimes. (See the electronic supplementary material, table S2 for extended
descriptions. Raster data can be visualized in an online map viewer at http://www.pacioos.hawaii.edu/projects/oceantippingpoints/#data.)

predictor description
temporal
range

spatial
resolution (m)

anthropogenic effluent nutrient run off (gallon/day/7 km2) from onsite waste

disposal systems (cesspools and septic tanks)

2009 – 2014 500

sedimentation estimate of annual average amount of sediment

(tons yr21) delivered offshore

2005 100

new development relative level (0 to 1) of new development along the

coastline

2005 – 2011 100

habitat modification presence-absence of any alteration or removal of

geomorphic structure as a result of human use

2001 – 2013 500

invasive algae observed presence of any invasive algae 2000 – 2013 500

commercial fishing annual average commercial reef fisheries catch

(kg ha21)

2003 – 2013 100

non-commercial boat

fishing

annual average non-commercial boat-based reef

fisheries catch (kg ha21) from all gear types

2004 – 2013 100

non-commercial shore

fishing_line

annual average non-commercial shore-based reef

fisheries catch (kg ha21) by line

2004 – 2013 100

non-commercial shore

fishing_net

annual average non-commercial shore-based reef

fisheries catch (kg ha21) by net

2004 – 2013 100

non-commercial shore

fishing_spear

annual average non-commercial shore-based reef

fisheries catch (kg ha21) by spear

2004 – 2013 100

biophysical SST _max maximum monthly climatological mean of sea surface

temperature (8C)

1985 – 2013 5000

SST_STD standard deviation of the long-term mean of weekly

sea surface temperature (8C)

2000 – 2013 5000

chlorophyll_max maximum monthly climatological mean of

chlorophyll-a (mg m23)

2002 – 2013 4000

chlorophyll_anomaly annual average of the total number of anomalous

events for chlorophyll-a

2002 – 2013 4000

irradiance_max maximum monthly climatological mean of

photosynthetically available radiation

(Einstein m22 d21)

2002 – 2013 4000

irradiance_STD standard deviation of the long-term mean of 8 days

irradiance composites (Einstein m22 d21)

2002 – 2013 4000

wave_max maximum monthly climatological mean of wave power

(kW m21)

1979 – 2013 500 – 1000

wave_anomaly annual average of the total number of anomalous

events for wave power

2000 – 2013 500 – 1000

complexity topographical complexity of the seafloor measured as

slope of slope (i.e. the maximum rate of change in

seafloor slope)

1999 – 2000 5

depth depth of the seafloor in metres 1999 – 2000 5
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Model performance was evaluated by 10-fold cross-

validation that allows to test the model against withheld portions

of the data which are not used in model fitting [23]. We looked

at the cross-validated per cent deviance explained, calculated
as (1 – (cross-validated deviance/mean total deviance)) and

cross-validated area under the receiver operating characteristics

curve (AUC) as measures of model performance. An AUC

value of 0.5 corresponds to a predictive ability similar to what

http://www.pacioos.hawaii.edu/projects/oceantippingpoints/#data
http://www.pacioos.hawaii.edu/projects/oceantippingpoints/#data


(a)

(b)

Figure 2. (a) Relative influence of anthropogenic (dark grey) and biophysical (light grey) predictor variables used to model the occurrence of each reef regime. The
‘asterisks’ mark variables with an influence above what could be expected by chance (greater than 5%, indicated by the dotted line). The signs þ and 2 display
the general direction of the relationship, when discernible. (b) Distribution of the four regimes along a continuum of anthropogenic versus biophysical relative
contribution, calculated by considering only the variables with a relative influence greater than 5%. SST, sea surface temperature; max, maximum monthly cli-
matological mean; STD, standard deviation of the long-term mean; anomaly, frequency of anomalies. (Online version in colour.)
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would be expected by chance alone. Values are considered

‘acceptable’ between 0.7–0.8, ‘excellent’ between 0.8–0.9 and ‘out-

standing’ above 0.9 [26]. Spatial autocorrelation was assessed by

estimating Moran’s I coefficients from the model residuals [27].

We calculated the relative importance of each predictor based

on the number of times a variable was selected for splitting,

weighted by the squared improvement to the model as a result

of each split and averaged over all trees [23,28]. To assess the

relative contribution of anthropogenic versus biophysical predic-

tors for each regime, we considered only the variables with a

relative influence above that expected by chance (100/number

of variables, i.e. 5%) [29] and rescaled their influence to 100%.

Partial dependency plots with 95% confidence intervals

obtained from 1000 bootstrap replicates [25] were used to visual-

ize the relationships between the most influential predictor

variables and the response (regime), while keeping all other pre-

dictors at their mean. We quantified relative interaction strength

between predictors by measuring residual variation between

pairwise model predictions with and without interactions [30].

We used 100 bootstrap resampling to test the significance of

the strongest interactions. For each bootstrap, we randomly

resampled the occurrence of the regime before re-fitting the

BRT model and then recorded the size of the interactions to

generate a distribution under the null hypothesis of no

interaction among predictors [30].

Input data for the predictor variables had different native

spatial resolutions (table 1). For instance, while many of the

anthropogenic predictor rasters were available at a fine spatial

grain (less than 500 m), most of the biophysical ones were gener-

ated at a coarser grain size (e.g. 4000 m). To control for the

influence of different grain sizes on the outcome of the model,

we extracted all predictor raster datasets at multiple standardized

grain sizes (500, 1000, 1500, 2500 and 4000 m), before re-running

the BRTs on regimes aggregated following a two-thirds majority

within each cell resolution (electronic supplementary material,

figure S3).
3. Results
(a) Relative influence of human and biophysical

predictors
BRT models performed well for all four regimes (electronic

supplementary material, table S5), with deviance explained

from 37% to 41%, high predictive performance (AUC scores

between 0.88–0.91) and minimal spatial autocorrelation

(Moran’s I between 0.02 and 0.04). The pattern of predictors’

contributions differed among regimes, with regimes 1 and 2

displaying a few strongly influential predictors, while

regimes 3 and 5 were best explained by a broader, but less

influential, set of variables (figure 2a). This was also reflected

by the number of predictors having a relative influence above

what could be expected by chance: five for regime 1, six for

regime 2 and nine for regimes 3 and 5 (figure 2a). The

regimes distributed along a continuum of biophysical and

anthropogenic influence (figure 2b), with an overwhelming

contribution of biophysical variables in predicting the occur-

rence of regimes 3, 2 and 5 (92%, 91% and 77% biophysical

relative influence, respectively). Regime 1, on the other

hand, was most effectively predicted by anthropogenic

variables (57%).

(b) Predicting the occurrence of reef regimes
For each regime, the relationships of the five most influential

predictors (figure 3) and two strongest pairwise interactions

(table 2; electronic supplementary material, figure S4) are

described below. The probability of occurrence of regime 1

was higher as both non-commercial boat fishing catch

(21.5% relative influence) and commercial fishing catch

(11.6%) increased (figure 3a). Topographical complexity of



(a)

(b)

(c)

(d)

Figure 3. Partial dependency plots with 95% confidence intervals for the five most influential variables predicting the occurrence of four distinct reef regimes
(a – d ). The graphs show the effect of a given predictor on the probability of occurrence of the regime while keeping all other variables at their mean. Relative
influence of each predictor is reported between parentheses. Grey tick marks across the top of each plot indicate observed data points. SST, sea surface temperature;
max, maximum monthly climatological mean; STD, standard deviation of the long-term mean; anomaly, frequency of anomalies. (Online version in colour.)

Table 2. Pairwise interactions between predictor variables. A summary description is given for the trend associated to a peak in occurrence probability for each
regime. Smaller values indicate weaker interactions. All interactions were significant ( p , 0.01). See the electronic supplementary material, figure S4 for the
interaction plots. SST, sea surface temperature; max, maximum monthly climatological mean; STD, standard deviation of the long-term mean.

model predictor 1 predictor 2
interaction
size summary

regime 1 complexity non-commercial boat fishing 27.97 higher recreational boat fishing catch and lower

complexity

complexity commercial fishing 27.76 higher commercial fishing catch and lower complexity

regime 2 wave_max SST_STD 64.82 higher wave power and higher variation of sea surface

temperature

depth wave_max 18.51 shallower depth and higher wave power

regime 3 irradiance_STD SST_max 11.91 no clear pattern

complexity irradiance_max 11.47 no clear pattern

regime 5 irradiance_STD invasive algae 25.35 lower variation of irradiance and observed presence of

invasive algae

depth non-commercial boat fishing 15.55 deeper depth and higher recreational boat fishing

royalsocietypublishing.org/journal/rspb
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the seafloor was the second strongest predictor (20.1%),

suggesting regime 1 is more likely to occur in areas with

low structural complexity. Depth (8.8%) and effluent (5.5%)

both displayed positive relationships. Interaction patterns
reflected the influence of the most important predictors

with the probability of regime 1 occurring being greatest

when fishing catch was high and structural complexity was

low (table 2; electronic supplementary material, figure S4a).
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The model explained 41% of the deviance and had an AUC

score of 0.90.

Regime 2 was best predicted by a strong positive relation-

ship with maximum monthly climatological mean of wave

power (36.5%), indicating a higher occurrence of this

regime in wave-exposed sites (figure 3b). Cooler maximum

monthly climatological sea surface temperature (9.3%),

higher complexity (8.5%) and high variation of temperature

(7.8%) all increased the probability for regime 2 to occur,

while depth (8.7%) showed a slightly negative relationship.

The two most important interactions (table 2) revealed a

higher probability of occurrence as both wave power and

temperature variation increased, and a weakening of the

impact of waves at deeper depths (electronic supplementary

material, figure S4b). The model explained 37% of the

deviance and had an AUC score of 0.88.

Biophysical variables were also the most influential pre-

dictors of regime 3 (figure 3c). Occurrence probability was

higher in places with low maximum monthly climatological

chlorophyll-a concentration (13.6%)—but positively corre-

lated with a higher frequency of anomalous chlorophyll-a
events (7.7%). Regime 3 was more likely at depths shallower

than 25 m (8.9%) and in wave-sheltered environments (8.2%).

The interactions were weak, with no clear interaction pattern

apparent (table 2; electronic supplementary material, figure

S4c). The model explained 39% of the deviance and had an

AUC score of 0.90.

Regime 5 was best predicted by depth (10.5%, peaked at

mid-depth), increased topographical complexity of the sea-

floor (10.1%) and lower variation of irradiance (9.5%)

(figure 3d ). It was also associated with higher levels of new

development along the coastline (9%) and, to a lesser

extent, increased catch from non-commercial shore spearfish-

ing (6.9%). The most important interaction involved variation

of irradiance and observed presence of invasive algae

(table 2). However, this result should be treated with caution

owing to the scarcity of data and binary nature (i.e. presence

only) of the invasive algae predictor. The second interaction

was weaker and displayed a greater effect of recreational

boat fishing with increasing depth (table 2; electronic sup-

plementary material, figure S4d). The model explained 41%

of the deviance and had an AUC score of 0.91.

(c) Cross-scale patterns
Repeating the analysis at multiple standardized grain sizes

(i.e. 500, 1000, 1500, 2500 and 4000 m) yielded largely similar

results to the ones described above for all four regimes in

terms of influential predictors and shape of the relationships.

There was no significant difference across grain sizes with

regard to model performance, or relative contribution of

anthropogenic versus biophysical variables (electronic

supplementary material, figure S5).
4. Discussion
Identifying the underlying drivers of different coral reef eco-

system regimes has great value for managers seeking viable

strategies to avoid, or reverse, regime shifts. Drawing on an

unprecedented compilation of data, this study presents, to

our knowledge, the first attempt at quantifying the relative

importance of anthropogenic and biophysical drivers in pre-

dicting reef ecosystems defined by both fish and benthic
communities. As such, it offers novel insights into coral

reef dynamics that can inform management strategies, as

well as a promising analytical approach that might be

applied in other ecosystems. Our findings provide empirical

evidence that dealing with alternative regimes is inherently a

social–ecological issue and that designing effective manage-

ment interventions requires both focusing on prominent

human drivers while accounting for the natural bounds set

by the local biophysical environment.

The overwhelming influence of biophysical predictors in

explaining the occurrence of three out of four regimes is strik-

ing. Only the most degraded regime, characterized by low

fish biomass, few corals and high turf cover, was primarily

predicted by anthropogenic variables (i.e. fishing and efflu-

ent). This confirms a large body of literature highlighting

the detrimental effects of high fishing pressure and effluent

discharge on reef ecosystems [31,32]. Studies have shown

that fishing can disrupt coral reef trophic structures [33,34]

and pave the way for algae to overgrow corals by removing

key herbivores that would otherwise provide top-down

algal control [10]. Similarly, excess nutrient delivery associ-

ated with local human populations has repeatedly been

attributed to promoting the competitive abilities of algae

[32,35], in particular turf algae [36].

Our findings also highlight the critical role of wave power

and suggest that it drives the occurrence of a specific regime

(i.e. regime 2), characterized by exposed sites with high fish

biomass but limited coral cover. By contrast, regime 3,

which displays substantial coral cover, occurs most com-

monly in sheltered environments with small pulses of

chlorophyll-a in an otherwise rather oligotrophic background.

This could illustrate how a pulsed delivery of oceanic-derived

nutrients from physical processes such as internal waves or

current-driven upwelling [37,38] may benefit corals on oligo-

trophic reefs by increasing ecosystem primary production

and the energy available for coral growth [39].

Depth and complexity appeared almost systematically

among the five most influential predictors, regardless of

regime type. Both variables have been identified as key fea-

tures influencing the structure of reef communities and

offering potential for recovery from disturbances (electronic

supplementary material, table S3). Areas with complex reef

structure, for instance, provide refuge from predation and

often harbour higher fish abundance and diversity [40].

While the most degraded regime (i.e. regime 1) was associ-

ated with very low complexity, the occurrence of regime 5,

which supports diverse fish assemblages and high coral

cover, peaked at mid-depth and increased with higher com-

plexity. Depth and complexity also emerged as prominent

interacting predictors, either weakening the effect of waves

and favouring recreational boat fishing at deeper depths, or

magnifying the impact of commercial fishing at low complex-

ity. Our findings emphasize the value of these simple yet

critical features in the management evaluation of a reef’s resi-

lience and clarify the mechanisms by which they can

synergistically interact.

Defining ecological regimes allows capture of a consider-

able level of complexity of reef ecosystems [8,12]. The

approach is also particularly appealing to managers who

are often interested in the status of the reef as a whole,

rather than its individual components. Yet, the descriptive

advantage gained when merging multiple response variables

may be counteracted by a reduction in the power to predict
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their occurrence, especially considering that species often

exhibit individual and distinct responses to their surroundings.

For instance, Gove et al. [16] improved model performance

fivefold when moving from predicting the spatial variation

in overall hard coral cover (11% deviance explained), to mod-

elling the distribution of individual hard coral morphologies

that show differential susceptibility to wave stress (55%

deviance explained). While the regimes allow us to account

for reciprocity between fish and benthic functional groups,

they form a complex response variable made of organisms

characterized by a wide range of attributes (e.g. slow versus

fast growing, mobile versus sessile). Despite such heterogen-

eity, our models were able to consistently explain around

40% of the cross-validated deviance with high AUC values,

thereby providing robust explanatory predictions of the

mechanistic dynamics underlying ecological regimes.

Although different reef regimes were explained by a broad

range of anthropogenic and biophysical variables, the particu-

larly strong influence of the latter warrants further

consideration. First, it may be specific to Hawaiian reefs. The

archipelago is one of the most isolated in the world, is located

at subtropical latitudes and experiences large oceanic forcings

[18,19]. Some regimes might therefore be shaped by powerful

biophysical drivers that supersede any human influence.

Second, our findings could relate to the spatial scale of the

analysis. Understanding the influence of scale requires analys-

ing two major components: grain and extent. Grain refers to

the finest spatial resolution within a given dataset, while

extent relates to the overall area encompassed by the study

[41]. While we were able to control for different grain sizes,

we could not satisfyingly subset the data and run the BRTs

for finer geographical areas than the Hawaiian Islands (e.g. a

stretch of coastline) owing to sample size. This can obscure

the relative importance of anthropogenic predictors that are

likely to operate at the local level rather than at the regional-

level, such as high sedimentation in an embayment [42].

Whether a stronger anthropogenic signature would emerge

at finer scales of analysis, therefore, represents an important

next step for future work that could better inform local com-

munity management. Finally, disentangling what represents

anthropogenic and biophysical predictors can be difficult in

an epoch where humans have become a dominant force in

nature [43,44]. Rising seawater temperature, for instance, is

profoundly influenced by human emissions of carbon dioxide

into the atmosphere [45]. Similarly, nearshore chlorophyll-a,

used here as a proxy for oceanic primary production [18],

can also capture local aspects of water quality influenced by

humans [38,46]. In addition, some biophysical conditions

greatly influence anthropogenic impacts, such as large seaso-

nal swell events preventing fishing activities, or flushing out

sediment and effluent.

Coral reef managers are often faced with the challenge of

where to allocate their limited resources and what manage-

ment options to prioritize. Recent studies have shown the

potential of fisheries regulations to facilitate reef recovery

[47,48] and balance conservation objectives with stakeholders’
interests [49]. Yet, less than one per cent of the coastline in the

Hawaiian Islands is currently under no-take marine protected

areas [50] and no licence is required for marine recreational

fishing across the archipelago, although non-commercial

catch has been estimated to be five times larger than commer-

cial catch [51]. A growing tourism-based economy and

planned development of new homes also have the potential

to exacerbate pollution and runoff [52]. While our results pro-

vide additional evidence that addressing fishing pressure and

water quality is critical to avoid degraded reef regimes, they

also highlight which biophysical drivers need to be accounted

for in a given location. There is little managers can do about

broad-scale biophysical drivers, but understanding how

environmental conditions shape coral reef regimes can help

inform management strategies and identify priority areas.

Importantly, our study provides the first step towards predict-

ing the outcome of alternative management actions. By taking

our results and turning them around for use in a forward-

thinking model, future work should explore where change in

a particular variable (or combination of variables) gives the

quickest transition into a more desirable state. Such analysis

would help identify where undesirable regimes may be

naturally occurring and, otherwise, determine the most

cost-effective management actions given a reef’s natural setting.

In the wake of the 2014–2016 coral bleaching event, the

State of Hawai‘i pledged to effectively manage 30 per cent

of its nearshore waters by 2030. Our analyses, together with

our publicly available database, represent valuable resources

to assist managers and policy-makers in this process. Ulti-

mately, however, addressing the challenges coral reefs are

facing globally will also require identifying distal drivers of

change (e.g. trade, climate change) and recognizing that

leverage may lie far away from the reef [43,53]. Only through

a combination of local and global management interventions,

can we ensure coral reefs continue to provide the ecosystem

services upon which so many people rely.
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