803 research outputs found

    Quark and Lepton Mass Patterns and the Absolute Neutrino Mass Scale

    Get PDF
    We investigate what could be learned about the absolute scale of neutrino masses from comparisons among the patterns within quark and lepton mass hierarchies. First, we observe that the existing information on neutrino masses fits quite well to the unexplained, but apparently present regularities in the quark and charged lepton sectors. Second, we discuss several possible mass patterns, pointing out that this quite generally leads towards hierarchical neutrino mass patterns especially disfavoring the vacuum solution.Comment: final version to be published in PRD, 5 pages, 2 figures, RevTe

    Models of Neutrino Masses: Anarchy versus Hierarchy

    Get PDF
    We present a quantitative study of the ability of models with different levels of hierarchy to reproduce the solar neutrino solutions, in particular the LA solution. As a flexible testing ground we consider models based on SU(5)xU(1)_F. In this context, we have made statistical simulations of models with different patterns from anarchy to various types of hierachy: normal hierarchical models with and without automatic suppression of the 23 (sub)determinant and inverse hierarchy models. We find that, not only for the LOW or VO solutions, but even in the LA case, the hierarchical models have a significantly better success rate than those based on anarchy. The normal hierachy and the inverse hierarchy models have comparable performances in models with see-saw dominance, while the inverse hierarchy models are particularly good in the no see-saw versions. As a possible distinction between these categories of models, the inverse hierarchy models favour a maximal solar mixing angle and their rate of success drops dramatically as the mixing angle decreases, while normal hierarchy models are far more stable in this respect.Comment: v1: 28 pages, 12 figures; v2: 34 pages, 14 figures, updated previous analysis with the inclusion of recent SNO result

    Energy Independent Solution to the Solar Neutrino Anomaly including the SNO data

    Get PDF
    The global data on solar neutrino rates and spectrum, including the SNO charged current rate, can be explained by LMA, LOW or the energy independent solution -- corresponding to near-maximal mixing. All the three favour a mild upward renormalisation of the Cl rate. A mild downward shift of the BB neutrino flux is favoured by the energy independent and to a lesser extent the LOW solution, but not by LMA. Comparison with the ratio of SK elastic and SNO charged current scattering rates favours the LMA over the other two solutions, but by no more than 1.5σ1.5\sigma.Comment: 18 pages, latex, 3 figure

    A SUSY SU(5) Grand Unified Model of Tri-Bimaximal Mixing from A4

    Get PDF
    We discuss a grand unified model based on SUSY SU(5) in extra dimensions and on the flavour group A4xU(1) which, besides reproducing tri-bimaximal mixing for neutrinos with the accuracy required by the data, also leads to a natural description of the observed pattern of quark masses and mixings.Comment: 19 page

    Annular Breakthrough

    Get PDF
    This report investigates mechanisms for annular breakthrough in a single-bearing system. The model treats the bearing as a "canal lock" mechanism and it assumes the competing effects of large pressure gradients across the washer and friction are of the same order. The pressure gradient is assumed to vary sinusoidally in time. The bearing rapidly settles into periodic motion and no breakthrough instability is observed

    Deviation of Atmospheric Mixing from Maximal and Structure in the Leptonic Flavor Sector

    Full text link
    I attempt to quantify how far from maximal one should expect the atmospheric mixing angle to be given a neutrino mass-matrix that leads, at zeroth order, to a nu_3 mass-eigenstate that is 0% nu_e, 50% nu_mu, and 50% nu_tau. This is done by assuming that the solar mass-squared difference is induced by an "anarchical" first order perturbation, an approach than can naturally lead to experimentally allowed values for all oscillation parameters. In particular, both |cos 2theta_atm| (the measure for the deviation of atmospheric mixing from maximal) and |U_e3| are of order sqrt(Delta m^2_sol/Delta m^2_atm) in the case of a normal neutrino mass-hierarchy, or of order Delta m^2_sol/Delta m^2_atm in the case of an inverted one. Hence, if any of the textures analyzed here has anything to do with reality, next-generation neutrino experiments can see a nonzero cos 2theta_atm in the case of a normal mass-hierarchy, while in the case of an inverted mass-hierarchy only neutrino factories should be able to see a deviation of sin^2 2theta_atm from 1.Comment: 12 pages, no figures, references and acknowledgments adde

    Hierarchical Neutrino Mass Matrices, CP violation and Leptogenesis

    Full text link
    In this work we study examples of hierarchical neutrino mass matrices inspired by family symmetries, compatible with experiments on neutrino oscillations, and for which there is a connection among the low energy CP violation phase associated to neutrino oscillations, the phases appearing in the amplitude of neutrinoless double beta decay, and the phases relevant for leptogenesis. In particular, we determine the predictions from a texture based on an underlying SU(3) family symmetry together with a GUT symmetry, and a strong hierarchy for the masses of the heavy right handed Majorana masses. We also give some examples of inverted hierarchies of neutrino masses, which may be motivated in the context of U(1) family symmetries.Comment: 34 pages. Replaced with published version -typos, corrections and references adde

    Constraints on Natural MNS Parameters from |U_e3|

    Full text link
    The MNS matrix structure emerging as a result of recent neutrino measurements strongly suggests two large mixing angles (solar and atmospheric) and one small angle (|U_e3| << 1). Especially when combined with the neutrino mass hierarchy, these values turn out to impose rather stringent constraints on possible flavor models connecting the three active fermion generations. Specifically, we show that an extremely small value of |U_e3| would require fine tuning of Majorana mass matrix parameters, particularly in the context of seesaw models.Comment: 21 pages, ReVTeX, 2 .eps figure files, updated references and acknowledgment

    Red Queen Coevolution on Fitness Landscapes

    Full text link
    Species do not merely evolve, they also coevolve with other organisms. Coevolution is a major force driving interacting species to continuously evolve ex- ploring their fitness landscapes. Coevolution involves the coupling of species fit- ness landscapes, linking species genetic changes with their inter-specific ecological interactions. Here we first introduce the Red Queen hypothesis of evolution com- menting on some theoretical aspects and empirical evidences. As an introduction to the fitness landscape concept, we review key issues on evolution on simple and rugged fitness landscapes. Then we present key modeling examples of coevolution on different fitness landscapes at different scales, from RNA viruses to complex ecosystems and macroevolution.Comment: 40 pages, 12 figures. To appear in "Recent Advances in the Theory and Application of Fitness Landscapes" (H. Richter and A. Engelbrecht, eds.). Springer Series in Emergence, Complexity, and Computation, 201

    Constraining fundamental constants of physics with quasar absorption line systems

    Full text link
    We summarize the attempts by our group and others to derive constraints on variations of fundamental constants over cosmic time using quasar absorption lines. Most upper limits reside in the range 0.5-1.5x10-5 at the 3sigma level over a redshift range of approximately 0.5-2.5 for the fine-structure constant, alpha, the proton-to-electron mass ratio, mu, and a combination of the proton gyromagnetic factor and the two previous constants, gp(alpha^2/mu)^nu, for only one claimed variation of alpha. It is therefore very important to perform new measurements to improve the sensitivity of the numerous methods to at least <0.1x10-5 which should be possible in the next few years. Future instrumentations on ELTs in the optical and/or ALMA, EVLA and SKA pathfinders in the radio will undoutedly boost this field by allowing to reach much better signal-to-noise ratios at higher spectral resolution and to perform measurements on molecules in the ISM of high redshift galaxies.Comment: 11 pages, 3 figure
    • 

    corecore