233 research outputs found

    Examination of the role of Mycoplasma bovis in bovine pneumonia and a mathematical model for its evaluation

    Get PDF
    The authors screened 34 large cattle herds for the presence of Mycoplasma bovis infection by examining slaughtered cattle for macroscopic lung lesions, by culturing M. bovis from lung lesions and at the same time by testing sera for the presence of antibodies against M. bovis. Among the 595 cattle examined, 33.9% had pneumonic lesions, mycoplasmas were isolated from 59.9% of pneumonic lung samples, and 10.9% of sera from those animals contained antibodies to M.bovis. In 25.2% of the cases M. bovis was isolated from lungs with no macroscopic lesions. The proportion of seropositive herds was 64.7%. The average seropositivity rate of individuals was 11.3% but in certain herds it exceeded 50%. A probability model was developed for examining the relationship among the occurrence of pneumonia, the isolation of M. bovis from the lungs and the presence of M. bovis specific antibodies in sera

    MeCP2 mutations: progress towards understanding and treating Rett syndrome

    Get PDF
    Rett syndrome is a profound neurological disorder caused by mutations in the MECP2 gene, but preclinical research has indicated that it is potentially treatable. Progress towards this goal depends on the development of increasingly relevant model systems and on our improving knowledge of MeCP2 function in the brain

    Understanding TERT promoter mutations: a common path to immortality

    Get PDF
    Telomerase (TERT) activation is a fundamental step in tumorigenesis. By maintaining telomere length, telomerase relieves a main barrier on cellular lifespan, enabling limitless proliferation driven by oncogenes. The recently discovered, highly recurrent mutations in the promoter of TERT are found in over 50 cancer types, and are the most common mutation in many cancers. Transcriptional activation of TERT, via promoter mutation or other mechanisms, is the rate-limiting step in production of active telomerase. Although TERT is expressed in stem cells, it is naturally silenced upon differentiation. Thus, the presence of TERT promoter mutations may shed light on whether a particular tumor arose from a stem cell or more differentiated cell type. It is becoming clear that TERT mutations occur early during cellular transformation, and activate the TERT promoter by recruiting transcription factors that do not normally regulate TERT gene expression. This review highlights the fundamental and widespread role of TERT promoter mutations in tumorigenesis, including recent progress on their mechanism of transcriptional activation. These somatic promoter mutations, along with germline variation in the TERT locus also appear to have significant value as biomarkers of patient outcome. Understanding the precise molecular mechanism of TERT activation by promoter mutation and germline variation may inspire novel cancer cell-specific targeted therapies for a large number of cancer patients.Support was provided from a generous gift from the Dabbiere family(RJB,AM,JFC), the Hana Jabsheh Research Initiative (RJB,AM,JFC), and NIH grants NCI P50CA097257 (RJB,AM,JFC), P01CA118816-06 (RJB,AM,JFC), R01HG003008 (HTR), and R01CA163336 (JSS). Additional support was provided from the Sontag Foundation Distinguished Scientist Award (JSS), Fundação para a Ciência e Tecnologia SFRH/BD/88220/2012 (AXM), IF/00601/2012 (BMC), Programa Operacional Regional do Norte (ON.2—O Novo Norte) (BMC), Quadro de Referência Estratégico Nacional (BMC), and Fundo Europeu de Desenvolvimento Regional (BMC).info:eu-repo/semantics/publishedVersio

    Prenatal maternal plasma DNA screening for cystic fibrosis: A computer modelling study of screening performance.

    Get PDF
    Background: Prenatal cystic fibrosis (CF) screening is currently based on determining the carrier status of both parents. We propose a new method based only on the analysis of DNA in maternal plasma. Methods: The method relies on the quantitative amplification of the CF gene to determine the percentage of DNA fragments in maternal plasma at targeted CF mutation sites that carry a CF mutation. Computer modelling was carried out to estimate the distributions of these percentages in pregnancies with and without a fetus affected with CF. This was done according to the number of DNA fragments counted and fetal fraction, using the 23 CF mutations recommended by the American College of Medical Genetics for parental carrier testing. Results: The estimated detection rate (sensitivity) is 70% (100% of those detected using the 23 mutations), the false-positive rate 0.002%, and the odds of being affected given a positive screening result 14:1, compared with 70%, 0.12%, and 1:3, respectively, with current prenatal screening based on parental carrier testing. Conclusions: Compared with current screening practice based on parental carrier testing, the proposed method would substantially reduce the number of invasive diagnostic procedures (amniocentesis or chorionic villus sampling) without reducing the CF detection rate. The expected advantages of the proposed method justify carrying out the necessary test development for use in a clinical validation study.The author(s) declared that no grants were involved in supporting this work

    Fast and accurate mutation detection in whole genome sequences of multiple isogenic samples with IsoMut

    Get PDF
    Background: Detection of somatic mutations is one of the main goals of next generation DNA sequencing. A wide range of experimental systems are available for the study of spontaneous or environmentally induced mutagenic processes. However, most of the routinely used mutation calling algorithms are not optimised for the simultaneous analysis of multiple samples, or for non-human experimental model systems with no reliable databases of common genetic variations. Most standard tools either require numerous in-house post filtering steps with scarce documentation or take an unpractically long time to run. To overcome these problems, we designed the streamlined IsoMut tool which can be readily adapted to experimental scenarios where the goal is the identification of experimentally induced mutations in multiple isogenic samples. Methods: Using 30 isogenic samples, reliable cohorts of validated mutations were created for testing purposes. Optimal values of the filtering parameters of IsoMut were determined in a thorough and strict optimization procedure based on these test sets. Results: We show that IsoMut, when tuned correctly, decreases the false positive rate compared to conventional tools in a 30 sample experimental setup; and detects not only single nucleotide variations, but short insertions and deletions as well. IsoMut can also be run more than a hundred times faster than the most precise state of art tool, due its straightforward and easily understandable filtering algorithm. Conclusions: IsoMut has already been successfully applied in multiple recent studies to find unique, treatment induced mutations in sets of isogenic samples with very low false positive rates. These types of studies provide an important contribution to determining the mutagenic effect of environmental agents or genetic defects, and IsoMut turned out to be an invaluable tool in the analysis of such data. © 2017 The Author(s)

    Hampered Foraging and Migratory Performance in Swans Infected with Low-Pathogenic Avian Influenza A Virus

    Get PDF
    It is increasingly acknowledged that migratory birds, notably waterfowl, play a critical role in the maintenance and spread of influenza A viruses. In order to elucidate the epidemiology of influenza A viruses in their natural hosts, a better understanding of the pathological effects in these hosts is required. Here we report on the feeding and migratory performance of wild migratory Bewick's swans (Cygnus columbianus bewickii Yarrell) naturally infected with low-pathogenic avian influenza (LPAI) A viruses of subtypes H6N2 and H6N8. Using information on geolocation data collected from Global Positioning Systems fitted to neck-collars, we show that infected swans experienced delayed migration, leaving their wintering site more than a month after uninfected animals. This was correlated with infected birds travelling shorter distances and fuelling and feeding at reduced rates. The data suggest that LPAI virus infections in wild migratory birds may have higher clinical and ecological impacts than previously recognised

    CUT-PCR: CRISPR-mediated, ultrasensitive detection of target DNA using PCR

    Get PDF
    Circulating tumor DNA (ctDNA) has emerged as a tumor-specific biomarker for the early detection of various cancers. To date, several techniques have been devised to enrich the extremely small amounts of ctDNA present in plasma, but they are still insufficient for cancer diagnosis, especially at the early stage. Here, we developed a novel method, CUT (CRISPR-mediated, Ultrasensitive detection of Target DNA)-PCR, which uses CRISPR endonucleases to enrich and detect the extremely small amounts of tumor DNA fragments among the much more abundant wild-type DNA fragments by specifically eliminating the wild-type sequences. We computed that by using various orthologonal CRISPR endonucleases such as SpCas9 and FnCpf1, the CUT-PCR method would be applicable to 80% of known cancer-linked substitution mutations registered in the COSMIC database. We further verified that CUT-PCR together with targeted deep sequencing enables detection of a broad range of oncogenes with high sensitivity (<0.01%) and accuracy, which is superior to conventional targeted deep sequencing. In the end, we successfully applied CUT-PCR to detect sequences with oncogenic mutations in the ctDNA of colorectal cancer patients' blood, suggesting that our technique could be adopted for diagnosing various types of cancer at early stages

    Impact of Inconsistent Policies for Transfusion-Transmitted Malaria on Clinical Practice in Ghana

    Get PDF
    Background: Policies concerning the prevention of transfusion transmitted malaria (TTM) are the responsibility of blood transfusion services and malaria control programmes. To prevent spreading drug resistance due to over-use of malaria drugs, recent malaria treatment guidelines recommend prompt parasitological confirmation before treatment is started. In contrast, blood safety policies from the World Health Organisation (WHO) recommend presumptive malaria treatment for recipients of blood in endemic countries but evidence supporting this approach is lacking. Our study documented how these conflicting policies relating to malaria transmission through blood transfusion impact on clinical practice in a teaching hospital in West Africa. Methods/Principal Findings: We randomly selected and reviewed case notes of 151 patients within 24 hours of their receiving a blood transfusion. Transfusion practices including the confirmation of diagnosis and anti-malarial treatment given were compared across three departments; Obstetrics and Gynaecology (O&G), Paediatrics and Medicine. Overall, 66 (44%) of patients received malaria treatment within 24 hrs of their blood transfusion; of which only 2 (3%) received antimalarials based on a laboratory confirmation of malaria. Paediatric patients (87%) received the most anti-malarials and only 7 % and 24 % of recipients in medicine and O&G respectively received anti malarials. In 51 patients (78%), the anti-malarials were prescribed at the same time as the blood transfusion and anti-malarials prescriptions exceeded the number of patient
    corecore