688 research outputs found
Marine Plastic Drift from the Mekong River to Southeast Asia
Southeast Asia is the world’s most polluted area in terms of marine plastics. The Mekong River is one of the largest rivers in the area, and ranked as somewhere between the 8th- and 11th-biggest contributor to plastics in the world’s oceans. Here, we investigate how microplastics drift from the Mekong river to Southeast Asia, and which coastlines are most exposed. We identify potential factors (wind drift, rivers, vertical mixing and sinking rates) that affect plastic drift in the region using the OpenDrift model with realistic wind and ocean currents for simulations between three months (summer and winter) and 15 months. We find that the seasonal drift is influenced by the monsoon systems and that most of the plastics strand in the Philippines and Indonesia. In addition, the role of wind drift is significant in strong winds. Vertical mixing and sinking rates are unknowns that affect the relative importance of wind drift (near the surface) and ocean currents. Simulations with different terminal velocities show that, unsurprisingly, the higher the terminal velocities are, the closer they deposit to the source. In light of the large uncertainties in sinking rates, we find that the plastic distribution has large uncertainties, but is clearly seasonal and influenced by wind, vertical mixing, river discharge and sinking rates. The Philippines and Indonesia are found to have the coastlines that are most exposed to plastic pollution from the Mekong river. This study shows that simulations of marine plastic drift are very variable, depending on many factors and assumptions. However, it provides more detailed information on marine plastic pollution in Southeast Asia, and hopefully helps authorities take more practical actions.publishedVersio
Snap evaporation of droplets on smooth topographies
Droplet evaporation on solid surfaces is important in many applications including printing, micro-patterning and cooling. While seemingly simple, the configuration of evaporating droplets on solids is difficult to predict and control. This is because evaporation typically proceeds as a “stick-slip” sequence—a combination of pinning and de-pinning events dominated by static friction or “pinning”, caused by microscopic surface roughness. Here we show how smooth, pinning-free, solid surfaces of non-planar topography promote a different process called snap evaporation. During snap evaporation a droplet follows a reproducible sequence of configurations, consisting of a quasi-static phase-change controlled by mass diffusion interrupted by out-of-equilibrium snaps. Snaps are triggered by bifurcations of the equilibrium droplet shape mediated by the underlying non-planar solid. Because the evolution of droplets during snap evaporation is controlled by a smooth topography, and not by surface roughness, our ideas can inspire programmable surfaces that manage liquids in heat- and mass-transfer applications
The Balanced Threat Agreement for Individual Externality Negotiation Problems
This paper introduces a model to analyze individual externalities and the associated negotiation problem, which has been largely neglected in the game theoretic literature. Following an axiomatic perspective, we propose a solution, as a payoff sharing scheme, called the balanced threat agreement, for such problems. It highlights an agent’s potential influences on all agents by threatening to enter or quit. We further study the solution by investigating its consistency. We also offer a discussion on the related stability issue
Enhancing gold recovery from electronic waste via lixiviant metabolic engineering in Chromobacterium violaceum
10.1038/srep02236Scientific Reports3
Integration of stool microbiota, proteome and amino acid profiles to discriminate patients with adenomas and colorectal cancer
BACKGROUND: Screening for colorectal cancer (CRC) reduces its mortality but has limited sensitivity and specificity. Aims We aimed to explore potential biomarker panels for CRC and adenoma detection and to gain insight into the interaction between gut microbiota and human metabolism in the presence of these lesions. METHODS: This multicenter case-control cohort was performed between February 2016 and November 2019. Consecutive patients ≥18 years with a scheduled colonoscopy were asked to participate and divided into three age, gender, body-mass index and smoking status-matched subgroups: CRC (n = 12), adenomas (n = 21) and controls (n = 20). Participants collected fecal samples prior to bowel preparation on which proteome (LC-MS/MS), microbiota (16S rRNA profiling) and amino acid (HPLC) composition were assessed. Best predictive markers were combined to create diagnostic biomarker panels. Pearson correlation-based analysis on selected markers was performed to create networks of all platforms. RESULTS: Combining omics platforms provided new panels which outperformed hemoglobin in this cohort, currently used for screening (AUC 0.98, 0.95 and 0.87 for CRC vs controls, adenoma vs controls and CRC vs adenoma, respectively). Integration of data sets revealed markers associated with increased blood excretion, stress- and inflammatory responses and pointed toward downregulation of epithelial integrity. CONCLUSIONS: Integrating fecal microbiota, proteome and amino acids platforms provides for new biomarker panels that may improve noninvasive screening for adenomas and CRC, and may subsequently lead to lower incidence and mortality of colon cancer
Barriers and enablers to blood culture sampling in Indonesia, Thailand and Viet Nam: a Theoretical Domains Framework-based survey
Objective: Blood culture (BC) sampling is recommended for all suspected sepsis patients prior to antibiotic administration. We examine barriers and enablers to BC sampling in three Southeast Asian countries.
Design: A Theoretical Domains Framework (TDF)-based survey, comprising a case scenario of a patient presenting with community-acquired sepsis and all 14 TDF domains of barriers/enablers to BC sampling.
Setting: Hospitals in Indonesia, Thailand and Viet Nam, December 2021 to 30 April 2022.
Participants: 1070 medical doctors and 238 final-year medical students were participated in this study. Half of the respondents were women (n=680, 52%) and most worked in governmental hospitals (n=980, 75.4%).
Outcome measures: Barriers and enablers to BC sampling.
Results: The proportion of respondents who answered that they would definitely take BC in the case scenario was highest at 89.8% (273/304) in Thailand, followed by 50.5% (252/499) in Viet Nam and 31.3% (157/501) in Indonesia (p<0.001). Barriers/enablers in nine TDF domains were considered key in influencing BC sampling, including ‘priority of BC (TDF-goals)’, ‘perception about their role to order or initiate an order for BC (TDF-social professional role and identity)’, ‘perception that BC is helpful (TDF-beliefs about consequences)’, ‘intention to follow guidelines (TDF-intention)’, ‘awareness of guidelines (TDF-knowledge)’, ‘norms of BC sampling (TDF-social influence)’, ‘consequences that discourage BC sampling (TDF-reinforcement)’, ‘perceived cost-effectiveness of BC (TDF-environmental context and resources)’ and ‘regulation on cost reimbursement (TDF-behavioural regulation)’. There was substantial heterogeneity between the countries. In most domains, the lower (higher) proportion of Thai respondents experienced the barriers (enablers) compared with that of Indonesian and Vietnamese respondents. A range of suggested intervention types and policy options was identified.
Conclusions: Barriers and enablers to BC sampling are varied and heterogenous. Cost-related barriers are more common in more resource-limited countries, while many barriers are not directly related to cost. Context-specific multifaceted interventions at both hospital and policy levels are required to improve diagnostic stewardship practices
Quantum Criticality in Heavy Fermion Metals
Quantum criticality describes the collective fluctuations of matter
undergoing a second-order phase transition at zero temperature. Heavy fermion
metals have in recent years emerged as prototypical systems to study quantum
critical points. There have been considerable efforts, both experimental and
theoretical, which use these magnetic systems to address problems that are
central to the broad understanding of strongly correlated quantum matter. Here,
we summarize some of the basic issues, including i) the extent to which the
quantum criticality in heavy fermion metals goes beyond the standard theory of
order-parameter fluctuations, ii) the nature of the Kondo effect in the quantum
critical regime, iii) the non-Fermi liquid phenomena that accompany quantum
criticality, and iv) the interplay between quantum criticality and
unconventional superconductivity.Comment: (v2) 39 pages, 8 figures; shortened per the editorial mandate; to
appear in Nature Physics. (v1) 43 pages, 8 figures; Non-technical review
article, intended for general readers; the discussion part contains more
specialized topic
GRAB: A Dataset of Whole-Body Human Grasping of Objects
Training computers to understand, model, and synthesize human grasping
requires a rich dataset containing complex 3D object shapes, detailed contact
information, hand pose and shape, and the 3D body motion over time. While
"grasping" is commonly thought of as a single hand stably lifting an object, we
capture the motion of the entire body and adopt the generalized notion of
"whole-body grasps". Thus, we collect a new dataset, called GRAB (GRasping
Actions with Bodies), of whole-body grasps, containing full 3D shape and pose
sequences of 10 subjects interacting with 51 everyday objects of varying shape
and size. Given MoCap markers, we fit the full 3D body shape and pose,
including the articulated face and hands, as well as the 3D object pose. This
gives detailed 3D meshes over time, from which we compute contact between the
body and object. This is a unique dataset, that goes well beyond existing ones
for modeling and understanding how humans grasp and manipulate objects, how
their full body is involved, and how interaction varies with the task. We
illustrate the practical value of GRAB with an example application; we train
GrabNet, a conditional generative network, to predict 3D hand grasps for unseen
3D object shapes. The dataset and code are available for research purposes at
https://grab.is.tue.mpg.de.Comment: ECCV 202
- …