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Abstract

This paper introduces a model to analyze individual externalities and the associated 

negotiation problem, which has been largely neglected in the game theoretic litera-

ture. Following an axiomatic perspective, we propose a solution, as a payoff sharing 

scheme, called the balanced threat agreement, for such problems. It highlights an 

agent’s potential influences on all agents by threatening to enter or quit. We further 

study the solution by investigating its consistency. We also offer a discussion on the 

related stability issue.
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1 Introduction

Externalities arise whenever an (economic) agent undertakes an action that has an 

effect on another agent. It is called a negative externality when the effect turns to 

be a cost, or a positive externality when it is a benefit. An associated fundamental 

question in real life is how to resolve the externality-incurred conflicts among 

agents through negotiation.

By the source of externalities, generally, there may exist two types: coalitional 

externalities and individual externalities. The former has been well studied in 

the literature based on the model of partition function form games, proposed by 

Thrall and Lucas (1963). In partition function form games, a coalition may have 

different values when the coalition structures to which the coalition is included 

are different. That is, externalities come from the players’ behavior of forming or 

breaking up coalitions. Various solution concepts have been proposed and ana-

lyzed by, among others, Myerson (1977), Bolger (1989), Feldman (1994), Maskin 

(2003), Macho-Stadler et al. (2007, 2010, 2018), Pham Do and Norde (2007), Ju 

(2007) and Borm et al. (2015).

Although individual externalities have been an important subject in econom-

ics, particularly in the context of institutional economics and the study of prop-

erty rights (cf. Coase 1960), it has been largely overlooked by the game theoretic 

literature. Different from coalitional externalities, in many interactive environ-

ments, agents may not take any specifically competitive or collaborative actions 

against others. But just due to the fact that they may co-exist in a situation, each 

agent may affect other agents in the given situation. The impact generated from 

one agent to another agent may be caused by a particular action, or simply by the 

fact of existence of the agent, as a pub owner might like a fashion store to be its 

neighbor but not prefer a fire station.

The classic common-pool resource problem in economics well illustrates this 

(cf. Ostrom et al. 1994; Funaki and Yamato 1999). Consider a number of fisher-

men living around a lake and all have the right of fishing in it. Given the intrin-

sic differences among those agents in capabilities, skills, tools and equipments, 

etc., their activities would generate different impact on each other and result in 

different utilities. Groundwater exploitation by the farms in a certain area is of 

the same nature. According to Ostrom (1990, 2003), common-pool resources are 

often well governed by common property protocols, rather than through private 

property or state administration, which is a mechanism based on self-management 

by a local community in coordinating the users of the resources. This empirical 

finding suggests that through negotiation among the participating agents, but not 

by privatization of the resources, externality-based conflicts could be resolved. 

Indeed, this general negotiation problem is what we are interested to explore in 

the paper from a game theoretic perspective, though we would focus on a specific 

setting where individual agents may choose to enter or quit a certain situation, by 

which there appear individual externalities.

Ju and Borm (2008) introduced the model of primeval games to investigate 

individual externalities. Such an externality can happen because one agent might 
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have different values or utilities when the statuses of the surrounding agents are 

different. The framework of partition function form games does not model indi-

vidual externalities as it assumes that all the players in the player set N are always 

present even if they do not form a coalition. The model of primeval games is 

different from the classical cooperative games in two main aspects: Primeval 

games do not consider cooperation (and, hence, the notion of coalition does not 

really apply), and primeval games take into account all situations in which only 

a subgroup of players (of the player set N) are present. In this way, all possi-

ble externalities among players are modeled. Following a normative approach, 

Ju and Borm (2008) proposes a sequential negotiation process with which three 

compensation rules for primeval games are introduced. These compensation rules 

reflect the most prominent, yet different fundamental principles in the context, 

and hence, can serve as specific benchmarks to solve the associated compensation 

issue.

A restriction in the analysis of individual externalities in Ju and Borm (2008) 

is that the situation where all players appear is the only one in question but all the 

other situations only serve as reference points for the associated bargaining problem. 

In the current paper, we relax such a restriction and allow for analyzing the issue of 

bargaining and possible transfers with respect to an arbitrary group of agents. To 

this end, we extend the original notion of primeval games in Ju and Borm (2008) by 

accommodating the option for agents to have freedom to join in or leave the situa-

tion, and construct a model called individual externality negotiation problem.

In this paper, we are mostly interested in given a group of agents which payoff 

scheme(s) can be agreed upon by all agents, provided that an agents can choose 

to enter or quit at his or her own will. We first introduce the notion of threatening 

power in this environment. An agent’s threatening power is her potential net influ-

ences on all agents’ payoffs by executing either the option of entering the group or 

the option of quitting it. Following a unilateral perspective, we argue that an agree-

ment can be reached when all agents have equal threatening power. This idea axi-

omatically motivates a new solution concept, called the balanced threat agreement. 

For any group of agents in an individual externality negotiation problem, we show 

that the balanced threat agreement exists and is unique. We provide a second charac-

terization by means of local consistency.

The paper also addresses the stability issue of the balanced threat agreement. 

Since for any n-agents individual externality negotiation problem, there exists a bal-

anced threat agreements for any given group of agents, it is interesting to analyze 

under which group its balanced threat agreement would make all agents have no 

incentive to change the situation. As a first attempt, we discuss the necessary and 

sufficient condition for the balanced threat agreement of the group N to be stable.

It is important to highlight that throughout the paper the notion of cooperation 

is not considered. As seen in the formal definitions below, when we introduce the 

notion of a group of agents, it is a neutral concept and does not imply cooperation 

among any agents of it at all. Neither the model nor the analysis considers coopera-

tion in a coalition or between coalitions.

The paper has the following structure. The next section presents the gen-

eral model: individual externality negotiation problem. Section  3 introduces two 



70 Homo Oeconomicus (2020) 37:67–85

1 3

straightforward axioms, efficiency and balanced threat, which axiomatically yields 

the solution concept of balanced threat agreement for this class of problems. Based 

on the local consistency, a second characterization is provided in Sect. 4. The final 

section concludes the paper by offering a discussion on the stability issue.

2  Individual Externality Negotiation Problems

Let N = {1,… , n} be the finite set of agents (or individuals). Note that for conven-

tional convenience, we may also call these agents players, although strictly speaking 

the notion of a player here in the current model is different from a player in a clas-

sical transferable utility game. Here, agents are not concerned with the option of 

forming coalitions or not, as it is not the question in the context. A subset S of N, in 

order to be distinguished from the usual concept of coalition in cooperative games, 

is called a group of individuals (in short, a group S). Here, the term of group is a 

neutral concept, which has nothing to do with cooperation or anything else, but sim-

ply means a set of individual agents in N.

A pair (i, S) that consists of an agent i and a group S of N to which i belongs is 

called an embedded agent (or insider) in S. Similarly, a pair (j, S) that consists of a 

player j and a group S of N to which j does not belong is called an unembedded agent 

(or outsider) with respect to S. Let E(N) denote the set of embedded agents, i.e.

Similarly, U(N) denotes the set of unembedded agents, i.e.

Definition 2.1 A mapping u, defined by

that assigns a real number u(i,  S) to each embedded agent (i, S) ∈ E(N) and 

u(j, S) = 0 for all unembedded agents (j, S) ∈ U(N) is an individual-group function. 

A tuple (N, u, M) where M ∈ 2
N�{�} is called an individual externality negotiation 

problem with respect to group M. The set of individual externality negotiation prob-

lems with agent set N is denoted by IEN.

The value u(i, S) represents the payoff, or utility, of agent i, given that all agents in 

S are present (or active) while all agents in N∖S are absent (or inactive). Thus, with 

different set of active agents, agent i may receive different payoffs, which suggests 

the externalities among agents. In case i is an unembedded agent, it means that agent 

i is not present, and by definition, all such agents have zero payoff. This is plausible 

E(N) =
{
(i, S) ∈ N × 2

N|i ∈ S
}

.

U(N) =
{
(j, S) ∈ N × 2

N|j ∉ S
}

.

u|E(N) ∶ E(N) ⟶ ℝ and u|U(N) ∶ U(N) ⟶ {0},
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because if an agent does not appear in a certain situation, this agent receives neither 

benefit nor cost from the situation.1 Moreover, we would like to emphasize that the 

agents in S individually come into view, without any cooperation among them. For 

any group of agents S ⊆ N and an individual-group function u, let uS denote the vec-

tor (u(i, S))
i∈N

.

Here, specifically, we use M to denote the group of agents that are assumed to be 

active. That is, for an individual externality negotiation problem (N, u, M) ∈ IE
N , 

the question we ask is which payoff sharing scheme can be agreed upon by all agents 

of N so that M is to be accepted as the group of individuals to be present while 

agents of N∖M remain outside, when all agents of N are allowed to take actions of 

either staying in or quitting M (if she was an insider of M) and either staying outside 

or joining M (if she was an outsider with respect to M).

Definition 2.2 A solution, or an agreement, for IE
N is a function f, which associ-

ates with each individual externality negotiation problem (N, u, M) in IEN a vector 

f(N, u, M) of individual payoffs in ℝN , i.e.,

The following three-agent example2 helps illustrate the class of individual exter-

nality negotiation problems.

Example 2.3 A three-agent individual externality negotiation problem (N, u, M) with 

N = {a, b, c} , M = {a, b} and the individual-group function u is given as follows. 

The underlying story could be well motivated by any common-pool resource situ-

ation, as explained in the introduction. Dependent which of the three agents would 

become active, i.e., as users of the resource (e.g., fishing in a pool, groundwater or 

underwater exploitation, coal mining, etc.), the agents may receive payoffs as speci-

fied above by uS . Here, the very problem, as an example, is which payoff scheme can 

be agreed on by all the three agents so that they can accept that both agents a and b 

are active whereas c is absent.

S ∅ {a} {b} {c} {�,�} {a, c} {b, c} {a, b, c}

u
S (0, 0, 0) (1, 0, 0) (0, 1, 0) (0, 0, 2) (−1, 5, 0) (−1, 0, 2) (0,−2, 4) (−2, 2, 3)

f (N, u, M) = (fi(N, u, M))i∈N ∈ ℝ
N

.

1 It is equally plausible to consider a more general scenario where unembedded agents may obtain non-

zero payoffs, which may reflect their “outside options” or the utilities of taking a different action from 

that of embedded agents. We assume zero payoffs for all unembedded agents as it helps the exposition of 

such a new model and its analysis, while it also has an advantage in certain contexts to clearly pin down 

a local analysis of the individual externalities confined to the given situation itself, without involving any 

possible impact from outside.
2 To avoid the likely inconvenience in distinguishing an agent from the payoff, the agents are named as 

a, b, and c instead of 1, 2, 3 in the example.
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3  The Balanced Threat Agreement

Consider the individual externality negotiation problem (N, u, M) given in Example 

2.3. Let us start the analysis by discussing why simply allocating to the agents of N 

according to uM may not necessarily be a desirable solution. Given now M = {a, b} , 

will the payoff vector (−1, 5, 0) to the three agents, respectively, be accepted? Obvi-

ously, a is unhappy with −1 because if she chooses to quit, the new active group 

of agents will be {b} and thus a will get 0 which is better than a negative payoff. 

Meanwhile, her quitting will cause b to suffer from losing 4 (= 5 − 1) . Therefore, a 

would be able to demand more by threatening to quit. Agent b has no much support 

to demand 5 directly as in uM because, apparently, if she chooses to quit, the cor-

responding new active group of agents will be {a} and then she will lost 5 but cause 

a’s situation to improve from −1 to 1. Similarly, one can also check the behavior 

of the unembedded agent c as an outsider of the group M. In this case, c could ask 

more because by showing up he can get a higher payoff of 3 and at the same time 

make both a and b worse off. Hence, there seems to be a reason for a and/or b to pay 

c in order to keep him out of M. Consequently, the sharing scheme of (−1, 5, 0) is 

inapplicable.

From the above example, one can see that, for an individual externality negotia-

tion problem, what matters for agents to demand more from a group is her potential 

influences to all agents by threatening to deviate from that status-quo (i.e., the given 

group). Accordingly, the final payoffs should be determined by a bargaining among 

all agents using their potential influences.

Now we formally explore this idea that will lead to a solution for individual exter-

nality negotiation problems.

Given a group M ∈ 2
N�{�} and a corresponding payoff vector uM . Any agent 

k ∈ N can make a demand xM

k
 with respect to uM , as no restriction is imposed on the 

freedom for agent k to stay with or leave M (if k is an insider of M) or remain being 

out of or choose to join M (if k is an outsider of M). We then have a demand vector 

x
M = (xM

k
)
k∈N

 . The question is how much an agent k should demand?

Firstly, a demand vector xM can be accommodated if 
∑

k∈N
x

M

k
≤
∑

i∈N
u

M

i
 . Thus, 

from an aggregate perspective, it is natural to introduce an axiom of efficiency 

towards a solution.

Axiom (Efficiency)

For any individual externality negotiation problem (N, u, M), the payoff vector xM 

is efficient if 
∑

k∈N
x

M

k
=
∑

i∈N
u

M

i
.

Next we investigate how much an individual agent may demand from uM . From 

a bargaining point of view and in the context of the individual externalities, all that 

an agent can do is to threat the others by taking unilateral actions of either quitting 

M if i was an insider or joining M if she was an outsider, which will make impact 

on the rest of the agents due to the resulting externalities. Accordingly, an agent’s 
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(individual) threatening power with respect to a demand vector xM , denoted by �M

i
,3 

can be measured as follows.

Definition 3.1 (Threatening power) Given an individual externality negotiation 

problem (N, u, M), for any player i ∈ N , the threatening power �M

i
 is the total net 

influence that agent i can exert on all other agents by taking a unilateral action that 

deviates from the status-quo of M, i.e.,

To help better understand this definition, we further explain it as follows. Con-

sider an embedded agent i ∈ M . Supposing that all others’ demands (xM

k
)
k∈N�{i} 

are known, i can make a demand xM

i
 by threatening that if the demand is not satis-

fied, she will quit M, which is the only possible action for her to take in this case. 

If she quits, M is violated so that M�{i} becomes a new group while each 

k ∈ M�{i} will get u
M�{i}

k
 , and i will get nothing since she now becomes an unem-

bedded agent of M�{i} . Hence, by taking the action of quitting, i can incur a dam-

age on all other agents: They will lose 
∑

k∈N�{i}

�

x
M

k
− u

M�{i}

k

�

 , where u
M�{i}

k
= 0 

for all k ∈ N�M . The cost for i to execute the action of quitting is xM

i
− 0.

Likewise, if i is an outsiders of M, she could demand xM

i
 from M by threatening 

that, if her demand is not satisfied, she will join M to form a new group M ∪ {i} . 

If she joins, M is violated so that within the new group M ∪ {i} each k ∈ M will 

get u
M∪{i}

k
 , and i will get u

M∪{i}

i
 since she now becomes an insider of M ∪ {i} . 

Hence, by making the action of joining, i can generate externalities to all other 

agents: They will lose 
∑

k∈N�{i}

�

x
M

k
− u

M∪{i}

k

�

 , where u
M∪{i}

k
= 0 for all 

k ∈ N�{M ∪ {i}} . The cost for i to execute the action of joining is xM

i
− u

M∪{i}

i
.

Example 3.2 Based on the three-agent individual externality negotiation problem 

(N, u, M) of Example 2.3, we illustrate the threatening powers of agents a, b and c, 

respectively. Given the demand vector x{a,b} =

{

x
{a,b}
a

, x
{a,b}

b
, x

{a,b}
c

}

,

Since we assume that all agents are free to quit or join a group, each agent 

would try to negotiate for more by making use of her threatening power. It is then 

�
M

i
=

⎧
⎪⎨⎪⎩

∑
k∈N�{i}

�
x

M

k
− u

M�{i}

k

�
− x

M

i
if i ∈ M;

∑
k∈N�{i}

�
x

M

k
− u

M∪{i}

k

�
−
�

x
M

i
− u

M∪{i}

i

�
if i ∈ N�M.

�
{a,b}
a

=(x
{a,b}

b
− 1) + (x{a,b}

c
− 0) − x

{a,b}
a

;

�
{a,b}

b
=(x{a,b}

a
− 1) + (x{a,b}

c
− 0) − x

{a,b}

b
;

�
{a,b}
c

=(x{a,b}
a

− (−2)) + (x
{a,b}

b
− 2) − (x{a,b}

c
− 3).

3 Precisely, the notation should be �x
M

i
 as the threatening power is related to the demand vector xM . For 

notational simplicity, where no confusion may arise, we use �M

i
 instead of �x

M

i
.
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plausible to expect that an agreement can only be accepted by all agents if the 

underlying payoff vector could make them have the same threatening power.

Axiom (Balanced Threat)

For any individual externality negotiation problem (N, u, M), the payoff vector xM 

satisfies balanced threat axiom if �M
i
= �

M
j

 for all i, j ∈ N.

It is interesting to see that there exists a unique solution that satisfies both the effi-

ciency and the balanced threat axioms.

Theorem  3.3 For any individual externality negotiation problem (N,  u,  M), there 

exists a unique solution that satisfies both the efficiency and the balanced threat axi-

oms, which we call the balanced threat agreement �M , and it is given by

where

Proof Let (N, u, M) be an individual externality negotiation problem. One can read-

ily check that the balanced threat agreement defined above satisfies both the effi-

ciency and the balanced threat axioms. To show that there exists a unique solution 

satisfying the two axioms, consider a solution x
M that satisfies both the efficiency 

and the balanced threat axioms. Below we show that xM will necessarily be identical 

to �M.

By efficiency, we know that

and by the balanced threat axiom, we have

where K ∈ ℝ.

By using the first equation 
∑

k∈N
x

M

k
=
∑

i∈M
u

M

i
 , the second equation becomes

and the third equation becomes

�M
t

=
1

n

∑

k∈M

uM
k
−

1

2
pt +

1

2n

∑

k∈N

pk for t ∈ N,

pt =
∑

k∈M⧵{t}

u
M⧵{t}

k
if t ∈ M

pt =
∑

k∈M

u
M∪{t}

k
− u

M∪{t}
t if t ∈ N ⧵ M.

∑

k∈N

x
M

k
=

∑

i∈N

u
M

i
,

For i ∈ M,
∑

k∈M⧵{i}

(xM
k
− u

M⧵{i}

k
) +

∑

l∈N⧵M

xM
l
− xM

i
= K,

For j ∈ N ⧵ M,
∑

k∈M

(xM
k
− u

M∪{j}

k
) +

∑

l∈N⧵M⧵{j}

xM
l
− (xM

j
− u

M∪{j}

j
) = K,

∑

k∈M

u
M

k
−

∑

k∈M⧵{i}

u
M⧵{i}

k
− 2x

M

i
= K,
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Summing up all the second equations and the third equations, we have

where n = |N| . This and the first equation imply

This equation and the second equation imply

for i ∈ M . Similarly, the third equation implies

for j ∈ N ⧵ M . This is equivalent to the following expression:

Here

Obviously, xM
= �M .   ◻

Example 3.4 For the three-agent individual externality negotiation problem (N, u, M) 

of Example 2.3, together with the condition of efficiency that requires 

∑

k∈M

uM
k
−
∑

k∈M

u
M∪{j}

k
+ u

M∪{j}

j
− 2xM

j
= K.

n
∑

k∈M

uM
k
−
∑

i∈M

∑

k∈M⧵{i}

u
M⧵{i}

k
− 2

∑

i∈M

xM
i
−

∑

j∈N⧵M

∑

k∈M

u
M∪{j}

k
+

∑

j∈N⧵M

u
M∪{j}

j

− 2
∑

j∈N⧵M

xM
j
= nK,

K =
n − 2

n

∑

k∈M

uM
k
−

1

n

(

∑

i∈M

∑

k∈M⧵{i}

u
M⧵{i}

k
+

∑

j∈N⧵M

∑

k∈M

u
M∪{j}

k
−

∑

j∈N⧵M

u
M∪{j}

j

)

xM
i
=

1

n

∑

k∈M

uM
k
−

1

2

∑

k∈M⧵{i}

u
M⧵{i}

k
+

1

2n

(

∑

i∈M

∑

k∈M⧵{i}

u
M⧵{i}

k

+
∑

j∈N⧵M

∑

k∈M

u
M∪{j}

k
−

∑

j∈N⧵M

u
M∪{j}

j

)

xM
j
=

1

n

∑

k∈M

uM
k
−

1

2

(

∑

k∈M

u
M∪{j}

k
− u

M∪{j}

j

)

+
1

2n
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∑

i∈M

∑

k∈M⧵{i}

u
M⧵{i}

k

+
∑

j∈N⧵M

∑

k∈M

u
M∪{j}

k
−

∑

j∈N⧵M

u
M∪{j}

j

)

xM
t
=

1

n

∑

k∈M

uM
k
−

1

2
pt +

1

2n

∑

k∈N

pk.

pt =
∑

k∈M⧵{t}

u
M⧵{t}

k
if t ∈ M

pt =
∑

k∈M

u
M∪{t}

k
− u

M∪{t}
t if t ∈ N ⧵ M.
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x
{a,b}
a

+ x
{a,b}

b
+ x

{a,b}
c

= −1 + 5 + 0 = 4 , one can readily compute that the balanced 

threat agreement �{a,b} =

{

2

3
,

2

3
, 2

2

3

}

.

It is useful to provide the balanced threat agreement �N under N for an individual 

externality negotiation problem (N, u, N). Without proof, we present the following 

result.

Corollary 3.5 For any individual externality negotiation problem (N, u, N), the bal-

anced threat agreement �N is given by

for all t ∈ N.

This formula can be understood intuitively. Firstly, an agent t receives the equal 

division of the total payoff 
∑

k∈N
u

N

k
 under N. Then, it will be adjusted by the average 

of the difference between two forces. 
∑

k∈N⧵{t} u
N⧵{t}

k
 is the aggregate payoff that all 

other agents can get if t deviates (i.e., leaves) from N. 
1

n

∑

k∈N

∑

l∈N⧵{k} u
N⧵{k}

l
 is the 

average aggregate payoff of all other agents if k deviates from N, or alternatively, 

is the aggregate payoff of all other agents if any agent may deviate from N with 

equal probability. We also remark that xN only depends on the sum of utility vectors 
∑

k∈N
u

N

k
 and 

∑

l∈N⧵{k} u
N⧵{k}

l
 for k ∈ N.

4  Consistency

In this section we study the underlying consistency property of the balanced threat 

agreement. Given an individual externality negotiation problem (N, u, M). Now we 

consider a situation that an agent m in the set N leaves the problem forever. By leav-

ing forever it would require that agent m will leave her benefit (or cost) behind and 

give up any possibility to exert any influence to other players of N but would expect 

to get some payoff in return. We then compare the solutions between the original 

situation (i.e., before m leaves) and the new situation (after m leaves).

The leaving agent m might have been a member of M or not. Let xM be the solu-

tion of the original problem (N, u, M). Suppose that when m leaves, she gets a payoff 

x
M

m
 according to the solution x

M , but she has to give up all other possible payoffs. 

This gives rise to the new situation as a reduced individual externality negotiation 

problem (N�{m}, û
x
, M̂).4

When m was in M, for the new problem û we have the following condition

�N

t
=

1

n

∑

k∈N

u
N

k
−

1

2

(

∑

k∈N⧵{t}

u
N⧵{t}

k
−

1

n

∑

k∈N

∑

l∈N⧵{k}

u
N⧵{k}

l

)

,

4 For notational simplicity, when no confusion is caused, hereafter we will write û instead of û
x
 and write 

the new problem as (N�{m}, û, M̂) , though one should bear in mind that the û is derived from (N, u, M) 

with respect to the specific solution xM for (N, u, M).
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as m has taken away xM

m
 after she leaves. For any agent i ∈ M ⧵ {m} , û is given by

This is because after m leaves and takes away xM

m
 , she also gives up any payoff in 

(N, u, M). Thus, in case agent i deviates from M, everyone else of M should get the 

same benefit (or cost) from the leaving of m, and hence they evenly share the payoff 

u
M�{i}
m  . By the same token, for j ∈ N ⧵ M , û is given by

and

When m is not in M, û is given by

while for i ∈ M,

and for j ∈ (N ⧵ M) ⧵ {m},

It seems interesting to explore the possible consistency of a solution in terms of 

the reduced problem. Accordingly, we introduce the following axiom that requires 

the coincidence of the solutions between the two problems. While for the original 

problem, the solution is denoted by xM , for the reduced problem, the notation of the 

solution would depend on the set of insiders. If the leaving agent m was in M, the 

solution is denoted by x̂M⧵{m} , and if m is not in M, then it is denoted by x̂M.

Axiom (Local Consistency)

For any individual externality negotiation problem (N,  u,  M) and the reduced 

problem (N�{m}, û, M̂) , a solution xM is locally consistent if for all k ∈ N�{m},

Theorem  4.1 For any individual externality negotiation problem, the balanced 

threat agreement �M under M satisfies local consistency.

∑

i∈M⧵{m}

û
M⧵{m}

i
=
∑

i∈M

u
M

i
− x

M

m

û
M⧵{i,m}

k
= u

M⧵{i}

k
+

u
M⧵{i}
m

|M| − 2
, for all k ∈ M ⧵ {i, m}.

û
M∪{j}⧵{m}

k
= u

M∪{j}

k
+

u
M∪{j}
m

|M| − 1
, for all k ∈ M ⧵ {m},

û
M∪{j}⧵{m}

j
= u

M∪{j}

j
.

∑

i∈M

û
M

i
=

∑

i∈M

u
M

i
− x

M

m
,

û
M⧵{i}

k
= u

M⧵{i}

k
for all k ∈ M ⧵ {i},

û
M∪{j}⧵{m}

k
= u

M∪{j}

k
for all k ∈ M ∪ {j}.

x
M

k
(N, u, M) = x

M̂

k
(N�{m}, û, M̂).
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Proof First we will consider a case of m ∈ M . By the definition of �M , for 

(N�{m}, û, M̂) , we have, for t ∈ N ⧵ {m},

where

Then, for t ∈ M ⧵ {m} , we have

For t ∈ N ⧵ M , we have

These imply that, for t ∈ N ⧵ {m},

This completes the proof for the case m ∈ M.

For the case of m ∈ N ⧵ M , we remark that,

𝛽
M⧵{m}
t (N�{m}, û, M̂) =

1

n − 1

�

k∈M⧵{m}

û
M⧵{m}

k
−

1

2
p̂t +

1

2n

�

k∈N⧵{m}

p̂k

=

∑

k∈M uM
k
− 𝛽M

m

n − 1
−

1

2
p̂t +

1

2n

�

k∈N⧵{m}

p̂k,

p̂t =
∑

k∈M⧵{m,t}

û
M⧵{m,t}

k
if t ∈ M ⧵ {m}

p̂t =
∑

k∈M⧵{m}

û
M⧵{m}∪{t}

k
− û

M⧵{m}∪{t}

t if t ∈ N ⧵ M.

p̂t =
∑

k∈M⧵{m,t}

(
u

M⧵{t}

k
+

u
M⧵{t}
m

|M| − 2

)
=

∑

k∈M⧵{m,t}

u
M⧵{t}

k
+ uM⧵{t}

m
=

∑

k∈M⧵{t}

u
M⧵{t}

k
= pt.

p̂t =
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(
u

M∪{t}

k
+

uM∪{t}
m

|M| − 1

)
− u

M∪{t}
t

=
∑

k∈M⧵{m}

u
M∪{t}

k
+ uM∪{t}

m
− u

M∪{t}
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u
M∪{t}

k
− u

M∪{t}
t = pt.

𝛽
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t (N�{m}, û, M̂)

=

∑

k∈M uM
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−
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1
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−
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pk.
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uM
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These imply that for any t ∈ N�{m}

This completes the proof for the case m ∈ N ⧵ M .   ◻

Next, consider an individual externality negotiation problem (N,  u,  M) where 

N = {i, j} . The following payoff vectors xM are referred to as standard for two-agent 

individual externality negotiation problems.

If M = N = {i, j} , then

If M = {i}, N ⧵ S = {j} , then

The standardness comes from a view of solving the problem by simply sharing the 

“surplus” equally, which is in the same spirit of the standard solution for transferable 

utility games. To see it clearly, taking x
{i,j}

i
 for example, it can be written as

That is, given agent i’s individual payoff could be either u
{i}

i
 or 0, dependent on who 

the active agent is, it seems reasonable to take the average as the reference. So is for 

p̂t =
∑

k∈M⧵{t}

û
M⧵{t}

k
=

∑

k∈M⧵{t}

u
M⧵{t}

k
for all t ∈ M, and
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k∈M

û
M∪{t}

k
− û

M∪{t}
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u
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4
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− u

{i,j}

j

4
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agent j. Then, they share the surplus from u
{i,j}

i
+ u

{i,j}

j
 equally. Similarly, if M = {i} , 

we have

Given agents now bargain over u
{i}

i
 as M = {i} , we take the average of payoffs in the 

other two scenarios as the reference and then share the surplus equally.

Axiom (Standardness for 2-agent problems)

For any 2-agent individual externality negotiation problem, a solution is standard 

if it yields the standard payoff vectors for any 2-agent individual externality negotia-

tion problem.

Theorem  4.2 The balance threat agreement �M is the only solution that satisfies 

local consistency and standardness for 2-agent problems.

Proof Since the previous theorem shows that the balanced threat agreement satisfies 

local consistency, and it is easy to show that the solution satisfies the standardness 

for 2-agent problems, it suffices to show the uniqueness part.

For that purpose, we use an induction on the number of agents. It is apparent to 

see that for the case of 2-agents, any solution that is standard yields a unique payoff 

vector. Take any N such that |N| ≥ 3 . Next for any M ⊆ N , take any two solutions 

xM
, yM which satisfy the local consistency. Then we have, if m ∈ M,

and

and if m ∈ N ⧵ M,

and

The induction hypothesis induces that, if m ∈ M,

and if m ∈ N ⧵ M,

Consider the case of m ∈ M . We have, for any t ∈ N ⧵ {m},

x
{i}

i
=

u
{i,j}

i
+ 0

2
+

1

2

⎛
⎜
⎜
⎝
u
{i}

i
−

u
{i,j}

i
+ 0

2
−

u
{i,j}

j
+ 0

2

⎞
⎟
⎟
⎠
.

x
M

t
(N, u, M) = x

M⧵{m}

t
(N ⧵ {m}, û

x
, M ⧵ {m}), for all t ∈ N ⧵ {m},

yM
t
(N, u, M) = y

M⧵{m}

t (N ⧵ {m}, ûy, M ⧵ {m}), for all t ∈ N ⧵ {m};

x
M

t
(N, u, M) = x

M

t
(N ⧵ {m}, û

x
, M), for all t ∈ N ⧵ {m}

yM
t
(N, u, M) = yM

t
(N ⧵ {m}, ûy, M) for all t ∈ N ⧵ {m}.

y
M⧵{m}

t (N ⧵ {m}, ûy, M ⧵ {m}) = x
M⧵{m}

t (N ⧵ {m}, ûx, M ⧵ {m}) for all t ∈ N ⧵ {m},

yM
t
(N ⧵ {m}, ûy, M) = xM

t
(N ⧵ {m}, ûx, M) for all t ∈ N ⧵ {m}.
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By similar arguments, for the case of m ∈ N ⧵ M , for any t ∈ N ⧵ {m} , we have

These imply that for any m ∈ N and any t ∈ N ⧵ {m},

Hence it also holds that for t ∈ N and m ∈ N ⧵ {t},

These imply that for any m ∈ N,

xM
t
(N, u, M) − yM

t
(N, u, M)

= x
M⧵{m}

t (N ⧵ {m}, ûx, M ⧵ {m}) − y
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Since |N| ≥ 3 , this implies that xM
m
= yM

m
 for all m ∈ N .   ◻

5  A Discussion on Stability

The main motivation of the paper is to propose a model to study a long neglected, 

yet general problem of individual externalities. Following a unilateral perspective, 

the balanced threat agreement, as a solution that provides a sensible payoff vector 

for any given group of agents, is axiomatically established. It is further characterized 

by means of consistency.

Since the solution we proposed focuses on a given group structure, one may argue 

that some agents might have incentive to deviate, if that would result in a new group 

structure and make them better off. This issue becomes more relevant if we consider 

the general n-agent environment, as for any M ∈ 2
N�{�} there exists a balanced 

threat agreement. Thus, it makes sense to analyze under which group its balanced 

threat agreement would make all agents have no incentive to change the situation. 

As a first attempt and also for the fact that very often N is the focal point, we discuss 

the necessary and sufficient condition for the balanced threat agreement of the group 

N to be stable.

As we know, for any individual externality negotiation problem (N,  u,  M), if 

i ∈ M leaves M, then she will get 0, and if j ∈ N ⧵ M joins M, then he will get u
M∪{j}

j
 . 

Accordingly, we can introduce the notion of stability as follows.

Definition 5.1 (Stability) For an individual externality negotiation problem 

(N, u, M), a payoff vector x ∈ ℝ
N is called stable if it satisfies:

The following theorem can be readily constructed by the definitions of efficiency 

and stability.

Theorem 5.2 For an individual externality negotiation problem (N, u, M), the stable 

payoff vector x ∈ ℝ
N which satisfies efficiency under M exists if and only if

It is straightforward to see that, when M = N , any payoff vector x ∈ ℝ
N that satis-

fies x
k
> 0 for all k ∈ N is always stable.

The following theorem offers a necessary and sufficient condition for the bal-

anced threat agreement � to be stable.

xM
m
− yM

m
=

(

−1

n − 1

)2

(xM
m
− yM

m
).

xi ≥ 0 for i ∈ M, xj ≥ u
M∪{j}

j
for j ∈ N ⧵ M.

∑

i∈M

uM
i
≥

∑

j∈N⧵M

u
M∪{j}

j
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Theorem 5.3 For an individual externality negotiation problem (N, u, N), the bal-

anced threat agreement �N is stable if and only if

Proof A necessary and sufficient condition of the stability of xN is given by

This is equivalent to

Since 
∑

l∈N⧵{k} u
N⧵{k}

l
 is independent on i, we have an equivalent expression:

  ◻

Apparently, a more general analysis of the stability issue seems challenging and 

requires further investigation, while alternative notions (e.g., collective versus uni-

lateral, myopic versus farsighted) of stability are worth exploring.

6  Concluding Remarks

Given this is a new model about externalities that addresses a long-neglected problem, 

in addition to the aforementioned stability issue, naturally it could open up many other 

promising venues for future research: (1) We can explore alternative properties and 

characterizations of the balanced threat agreement. (2) One may adopt a strategic per-

spective to build non-cooperative bargaining protocols to analyze the individual exter-

nality negotiation problems. This will not only help discover the possible underlying 

strategic features of the balanced threat agreement in line with the research agenda of 

the Nash Program (cf. Trockel 2002), but also help motivate other plausible solution 

concepts. (3) We may expect to gain new insights on existing problems if applying the 

current model to concrete settings such as the river sharing problems (cf. van den Brink 

et al. 2018) where individual externalities prevail but are yet to be explicitly studied. (4) 

The current paper is mainly concerned with a specific negotiation problem with respect 

to a given active group of agents. It is natural and interesting to remove this specifi-

cation but study the general negotiation issue with the entire set of agents, which no 

doubt will call for new solution concepts and extended analysis on stability problems. 
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(5) It may seem ambitious, and therefore quite challenging, but potentially very useful 

if we can introduce coalitional behavior into the modeling of the current problem. This 

would necessarily be a complicated model as it essentially combines the individual 

externality setting with partition function form games, but we may find it appealing in 

better fitting the real world.
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